

XPRESSpipe

[image: Build Status] [https://github.com/XPRESSyourself/XPRESSpipe/workflows/build/] [image: Documentation Status] [https://xpresspipe.readthedocs.io/en/latest/?badge=latest]

About

XPRESSpipe [https://github.com/XPRESSyourself/XPRESSpipe] is a part of the XPRESSyourself [https://github.com/XPRESSyourself/] suite of sequencing tools. XPRESSpipe [https://github.com/XPRESSyourself/XPRESSpipe] is an automated, efficient, and flexible pipeline for end-to-end processing of ribosome profiling data. XPRESSpipe [https://github.com/XPRESSyourself/XPRESSpipe] is currently capable of handling single-end (SE), paired-end (PE), and ribosome profiling data. Other analyses can be performed by XPRESSplot [https://github.com/XPRESSyourself/XPRESSplot]. Please read the relevant documentation for more information.

If you have limited or no computational experience, please see our Beginner’s Guide.

Please refer to the Overview page for more details regarding functionality.

Table of contents

	Overview

	Quickstart

	Beginner’s Guide

	Installation

	General Usage

	Curating References

	Single-End RNA-seq Pipeline

	Paired-End RNA-seq Pipeline

	Ribosome Profiling Pipeline

	Quality Control

	Analysis

	Read Pre-Processing

	Alignment

	Read Quantification

	Normalize

	Other Features

	FAQs

	Updates

License

XPRESSpipe [https://github.com/XPRESSyourself/XPRESSpipe] and the XPRESSyourself [https://github.com/XPRESSyourself/] suite is developed and maintained by Jordan Berg [https://j-berg.github.io/] in the Rutter Lab [https://biochem.utah.edu/rutter/index.html] @ the University of Utah [https://www.utah.edu/], along with other collaborators. We welcome pull requests if you would like to contribute to the project.

XPRESSpipe [https://github.com/XPRESSyourself/XPRESSpipe] is perpetually open source under a GNU General Public License (v3.0).

Questions?

If you have questions, requests, or bugs to report, please use the XPRESSpipe issues forum [https://github.com/XPRESSyourself/XPRESSpipe/issues].

Overview

Ribosome Profiling

Ribosome profiling [https://en.wikipedia.org/wiki/Ribosome_profiling] utilizes Next Generation Sequencing (NGS) to provide a detailed picture of the protein translation landscape within cells. Cells are lysed, translating ribosomes are isolated, and the ribosome protected mRNA fragments (ribosome footprints are integrated into a SE RNA-seq library. The library is then sequenced and processed similarly to a single-end RNA-seq run, with some exceptions:

5’ and 3’ ribosome footprint bias

Footprint read pile-up at the 5’ and 3’ ends of transcripts is a well-documented phenomenon in ribosome profiling. This results from the kinetically slower translation initiation and termination steps, thus leading to higher density of ribosomes at these positions. Therefore, it is best to quantify reads by excluding the extremities of transcripts from consideration. The convention is to remove the first 45 nt and last 15 nt of each transcripts coding space. By using the xpresspipe modifyGTF or xpresspipe curateReference sub-modules with the flag -t provided, the user can prepare the required files for appropriate footprint quantification.

rRNA contamination

Ribosome footprinting involves RNase digestion of a RNA. As these footprints are protected by the ribosome, they evade digestion and can later be incorporated into a sequence library. However, this leads to much of the ribosomal RNA being digested and fragments carrying through with the footprint samples. Commercial kits are often unable to target many of these randomly fragmented rRNA species, and it is thus advised to create depletion probes for dominant rRNA fragment species in ribosome profiling libraries for a given organism. By using the xpresspipe rrnaProbe sub-module, one can determine what the dominant consensus rRNA species are and create depletion probes to prevent their incorporation into future sequence libraries.

Ribosome profiling protocol and overview

See this paper [https://www.ncbi.nlm.nih.gov/pubmed/28579404] for a recent discussion and detailed protocol of the technique.

[image: ../_images/riboseq_overview.png]

SE and PE RNA-seq

The XPRESSpipe pipeline is flexibly designed to be able to process and perform preliminary analyses on single-end (SE) or paired-end RNA-seq sequence read. Raw data is most often generated in the form of a .fastq [http://support.illumina.com/content/dam/illumina-support/help/BaseSpaceHelp_v2/Content/Vault/Informatics/Sequencing_Analysis/BS/swSEQ_mBS_FASTQFiles.htm] or .txt file. This data is useful in determining the gene expression landscape of a population of cells. Other qualities, such as microRNA abundance, splice events, and sequence variants can also be detected and analyzed.

Software

XPRESSpipe aims to use the curate the most current and robust software packages required to process and analyze ribosome profiling and bulk RNA-sequencing. In designing XPRESSpipe, we referred to a variety of benchmarking studies to determine the best option for this pipeline. Below is a rationale for many of the packages chosen. As software continues to improve and benchmarking studies are published, XPRESSpipe and its documentation will be updated to reflect these improvements.

fastp

fastp source [https://github.com/OpenGene/fastp] – Read pre-processing

While external benchmarking has not been performed to our knowledge in recent years on read pre-processing tools, we chose to use fastp as it is fast, and (at least from self-reports) has reliable output. While most read pre-processing software does not diverge significantly in quality, we also favored fastp as it is able to handle more recent trends in RNA-Seq, such as trimming of unique molecular identifiers (UMIs) [https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4933-1].

STAR

STAR source [https://github.com/alexdobin/STAR] – Masking and Alignment

A recent benchmarking paper [https://www.nature.com/articles/nmeth.4106] showed that STAR outperformed other comparable tools in speed and performance, increasing the number of correctly aligned reads, while reducing the number of falsely called reads as is the case with several other packages.

Samtools, bedtools, deepTools

Samtools source [https://github.com/samtools/samtools], bedtools source [https://github.com/arq5x/bedtools2], deepTools source [https://github.com/deeptools/deepTools] – Alignment file post-processing

These tools handle the alignment file processing before quantification to identify PCR amplification artifacts (optional), remove non-uniquely aligned reads, and so on.

HTSeq

HTSeq source [https://github.com/simon-anders/htseq] – Read Quantification

HTSeq is used as it is a thoroughly vetting read counting package that has stood the test of time. Additionally, it is employed in the TCGA [https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/] pipeline, thus we included this option to conform to these specifications. In the case of quantifying reads, HTSeq is very accurate and has the advantage of being able to quantify to specific gene features. This is particularly useful in ribosome profiling as it allows you to quantify reads to the protein coding space (CDS) of a transcript. Additionally, if one wanted to examine differences in uORF occupancy of ribosome footprints, they could specify five_prime_utr or three_prime_utr for the --feature_type option.

Cufflinks

Cufflinks source [https://github.com/cole-trapnell-lab/cufflinks] – Read quantification (Isoform abundance)

A recent benchmarking paper [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0734-x] showed evidence that Cufflinks using default parameters performed the best compared to several other read quantification tools.

XPRESSpipe uses Cufflinks v2.1.1 as Cufflinks v2.2.1 appears to suffer from a persistent Seg Fault 11 error on MacOS. No significant changes effecting quantification have occurred between these versions. v2.1.1 is downloaded automatically for the user during installation of XPRESSpipe.

dupRadar

dupRadar source [https://bioconductor.org/packages/release/bioc/html/dupRadar.html] – Library Complexity

dupRadar is a stable, easy to use tool for estimating library size complexity and doesn’t suffer from systematic software issues like other tools that contain similar functionality.

riboWaltz

riboWaltz source [https://github.com/LabTranslationalArchitectomics/riboWaltz] – P-site distribution/periodicity analysis

riboWaltz offers to date perhaps the most elegant and complete method for P-site calculation and offers a complete suite of all P-site related utilities needed for ribosome profiling analysis.

SVA

SVA source [http://bioconductor.org/packages/release/bioc/html/sva.html] – Known Library Batch Correction

Used for correcting for known batch effects between samples (i.e. samples prepared on different days, by different people, etc.)

DESeq2

DESeq2 source [http://bioconductor.org/packages/release/bioc/html/DESeq2.html] – Differential Expression Analysis

Perform differential expression analysis on the data.

MultiQC

MultiQC source [https://github.com/ewels/MultiQC] – Summary reports

MultiQC gathers log output from fastp, STAR, and HTSeq/Cufflinks to provide the user with a easy to view summary of their processed data at each step. A pipeline run will also FastQC [https://www.bioinformatics.babraham.ac.uk/projects/fastqc/]

Methodology

We seek to provide the best methodology for high-throughput sequencing processing, and explain key components below.

Transcriptomic Reference Files

Read quantification often requires a transcriptome reference file in order to know what alignment coordinates map to what genes. We introduce a suite of GTF modification tools included in XPRESSpipe that we will briefly discuss:

- Isoforms: GTF files contain records for every isoform of a gene. However, since these isoforms all contain overlapping regions, many tools count a read mapping to one of these regions as a multi-mapper and either penalizes it or discards it completely. A common way to handle this is by taking only the longest transcript for each gene during quantification. This can be performed with xpresspipe modifyGTF -l.

- Protein Coding: When calculating mRNA expression levels, sample normalization to reduce technical bias from RNA-seq platforms is important. However, highly-abundant rRNAs can confound these metrics. Therefore, we provide an option to create a GTF file with only protein-coding annotated genes as input for quantification using xpresspipe modifyGTF -p.

- Ribosome Profiling Bias: During translation, there are three steps: 1) Initiation, 2) Elongation, and 3) Termination. There is usually a pause during Initiation and Termination, which will present itself as systematic spikes on the 5’ and 3’ ends of each transcript for ribosome profiling reads. A way to correct for the kinetics of initiation and termination and measure translational capacity itself is to avoid mapping reads to the first 15 codons and last 5 codons of a transcript [https://www.ncbi.nlm.nih.gov/pubmed/28579404]. xpresspipe modifyGTF -t handles this by searching the exon space of each transcript and pruning the given amounts off of each so that these regions are considered non-coding space. This process is performed recursively, so that if you were trimming 45 nt from the 5’ end and exon 1 was only 30 nt, exon 1 would be removed and exon 2 would be trimmed by 15 nt.

PCR De-Duplication

During sequence library creation, a PCR amplification step is common in order to produce enough sequence material, but often, different reads are amplified differentially. When UMIs are not used, these duplication events can lead to artificially higher expression of a transcript. We therefore include an optional PCR de-duplication step for experiments not using UMIs. Be warned, this can introduce additional biases [https://www.ncbi.nlm.nih.gov/pubmed/30001700] and should be used with caution. Performing library complexity analysis on the samples should indicate whether or not computational de-duplication should be performed. If UMIs were used, these can be specified and will be handled by the pipeline.

Meta-Analysis

Read distribution: Once reads are trimmed of low quality bases or adapter sequences, looking at the distribution of read lengths can be helpful in identifying that the expected RNA was incorporated into the library. This is especially useful in ribosome profiling datasets, where ideally all reads isolated and incorporated into the library should fall within the 21-33 nt range.

Metagene: Metagene analysis takes the read coverage across all transcripts in a sample and compiles their distribution along a representative transcript. This is useful in identifying any systematic 5’ or 3’ biases in the library preparation step.

P-Site Statistics: Helpful metrics of ribosome profiling libraries including looking at the characteristic 3 nt/1 codon stepping of the translating ribosome and codon usage per sample.

Gene Coverage: Aspects of a transcript’s read coverage or occupancy can be of interest. However, other genome browsers like IGV [https://software.broadinstitute.org/software/igv/] retain introns, and in the case of transcripts with massive introns, the actually coding space will be difficult to analyze succinctly. XPRESSpipe will plot the gene coverage across an exon-only transcript representation. However, it may still be worthwhile to explore intron coverage in some instances.

Quickstart

Running XPRESSpipe

Along with the video walkthroughs provided below, we recommend users start with the build module after installation:

$ xpresspipe build

This will present the user with a series of questions to help design the command that should be executed in the command line
to curate a reference or to run the pipeline

Video Walkthroughs

The following is a short tutorial showing you how to install XPRESSpipe:

Note

The pip install . method has been replaced with a script that is executed by running bash install.sh.

 Beginner’s Guide

Beginner’s Guide

First Steps

If this is your first time doing any programming, congratulations! You are embarking upon a very rewarding path. As with learning any new spoken language, there is a learning curve associated with learning a computer language. While XPRESSpipe is aimed at reducing the majority, if not (hopefully) all of the overhead associated with processing this data, using this software will still require some effort, just as would learning any new language or laboratory technique.

XPRESSpipe is run through the command line interface [https://en.wikipedia.org/wiki/Command-line_interface] (or CLI [https://www.youtube.com/watch?v=kqUR3KtWbTk]). This may seem daunting, but luckily, several free online courses are available to quickly catch you up to speed on some of the basics that will be required to use this software. We recommend Codecademy’s CLI course, which you can find here [https://www.codecademy.com/learn/learn-the-command-line] and should take only a couple of hours (Codecademy estimates ~10 hours, but you probably don’t need to finish the course to be ready to use XPRESSpipe. The purpose of this is to help you become more comfortable with the command line). We recommend watching the walkthrough videos found on the quickstart page.

Once you’re ready to jump into the command line, we can get rolling! For the steps below, we’re going to assume we are on an Mac operating system and provide examples under this pretext, but this software is compatible with any Linux-like operating system and the syntax is largely the same (sorry Windows users! – but if you have a newer version of Windows, you may be able to use a Linux-flavored environment).

Install XPRESSpipe

Please refer to the installation documentation or the walkthrough video below:

Note

The pip install . method has been replaced with a script that is executed by running bash install.sh.

 Installation

Installation

Install XPRESSpipe

1. Open your command line interface and install conda [https://docs.conda.io/projects/conda/en/latest/user-guide/install/], if not already installed.

If on a MacOS
$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

If on a LinuxOS
$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash ~/Miniconda3-latest-MacOSX-x86_64.sh

Enter yes for all successive prompts and allow the script to install Conda into your path
After installation, the install script can be removed
rm ~/Miniconda3-latest-MacOSX-x86_64.sh

2. Download the latest version of XPRESSpipe by executing the lines of code in the code block below. Replace the URL for the version of XPRESSpipe for whatever version you want (these can be found under the releases tab on the XPRESSpipe GitHub repository [https://github.com/XPRESSyourself/XPRESSpipe/releases]).

$ cd ~
$ curl -L -O https://github.com/XPRESSyourself/XPRESSpipe/archive/refs/tags/v0.6.3.zip
$ unzip XPRESSpipe-v0.6.3.zip
$ cd XPRESSpipe-v0.6.3/

3. Install XPRESSpipe dependencies via Conda and activate the XPRESSpipe environment:

Note

20 Oct 2021 - Currently, base conda is having issues resolving the dependencies required for XPRESSpipe. We recommend installing dependencies using mamba instead, which appears to resolve dependencies without issues. mamba is also conveniently faster than base conda.

Installing dependencies using base conda:

$ conda env create -f requirements.yml
$ conda activate xpresspipe

Installing dependencies using mamba [https://github.com/mamba-org/mamba]:

$ conda install -c conda-forge mamba
$ mamba env create -f requirements.yml
$ conda activate xpresspipe

4. This installation method will create a separate environment for XPRESSpipe and all its dependencies to live in. Each time you open the command line, you will need to type conda activate xpresspipe to use XPRESSpipe

5. Install XPRESSpipe and test that the installation was successful:

Note

v0.6.3 and later employs the bash install.sh method for installing XPRESSpipe. If using v0.6.2 or earlier, you should instead run pip install .

$ bash install.sh
$ xpresspipe test

If a summary menu appeared in the command line interface, it means we are good to go! Congrats! You are almost ready to use XPRESSpipe!

You can run xpresspipe --help to see a list of the available modules within XPRESSpipe. To see specific parameters for a module, type xpresspipe <module_name> --help.

Install in a supercomputing environment

If the dependencies for XPRESSpipe were installed to a conda environment as above, you will need to add a couple lines to you bash script to submit the supercomputing job.

For example, if using a SLURM job scheduler, you should include the following after the #SBATCH lines and before any calls to XPRESSpipe in the slurm script, as below:

#!/bin/bash
#SBATCH --time=72:00:00
#SBATCH --nodes=1
#SBATCH ...
...

source $(conda info --base)/etc/profile.d/conda.sh
source activate xpresspipe

... rest of the script

 General Usage

General Usage

XPRESSpipe can be run essentially from beginning to end as a pipeline, or as individual sub-modules. We will describe each option in more detail in each section of the documentation. The purpose of XPRESSpipe is to automate the alignment, quality control, and initial analysis of single-end (SE), paired-end (PE), and ribosome profiling data. It is intended that input data is in its own directory and that each file is a properly formatted fastq file. However, the suffix for these files can be fq or txt as well. They can be zipped (zip or gz) or unzipped. When using intermediate sub-modules, such as align or readDistribution, input will vary and is explicated

in the --help menu for each sub-module.

Further analysis on the resulting datasets can be performed using XPRESSplot [https://github.com/XPRESSyourself/XPRESSplot].

File Naming

In order for many of the XPRESSpipe functions to perform properly and for the output to be reliable after alignment (except for generation of a raw counts table), file naming conventions must be followed.

1. Download your raw sequence data and place in a folder – this folder should contain all the sequence data and nothing else.

2. If you are working with single-end data, the files must be a FASTQ-formatted file and end with the suffix fastq, fastq.gz, fq, fq.gz, txt, txt.gz. We recommend the fastq or fastq.gz suffix.

3. If you are working with paired-end data, the rules from Step 2 apply, but must the suffix must be prefaced by the paired read group number as below:

ExperimentName_Rep1_a_WT.r1.fastq.gz
ExperimentName_Rep1_a_WT.r2.fastq.gz
ExperimentName_Rep2_a_WT.r1.fastq.gz
ExperimentName_Rep2_a_WT.r2.fastq.gz

or

ExperimentName_Rep1_a_WT.read1.fastq.gz
ExperimentName_Rep1_a_WT.read2.fastq.gz
ExperimentName_Rep2_a_WT.read1.fastq.gz
ExperimentName_Rep2_a_WT.read2.fastq.gz

Data Output

Running seRNAseq, peRNAseq, or riboseq will output all intermediate and final data files as shown in this schematic:

[image: ../_images/xpresspipe_overview.png]

 Curating References

Curating References

In order to quantify transcription levels from RNA-Seq data, reads must be mapped to a reference genome or transcriptome. While there are multiple alignment software packages available, XPRESSpipe performs this step using a current version of STAR [https://github.com/alexdobin/STAR] for several reasons:

- Splice Junction Aware: STAR is capable of mapping reads spanning a splice junction, where more traditional packages, such as Bowtie, are incapable of doing so and are better suited for tasks such as genome alignment.

- Performance: While computationally greedy (a human genome alignment requires upwards of 30 Gb RAM), the performance and accuracy is excellent compared to the majority of other splice-aware aligners currently available [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792058/]

- Standard: The foundation of the pipeline used in XPRESSpipe is based in the TCGA [https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/] standards for RNA-Seq alignment. This method utilizes a guided or 2-pass alignment program. In the guided alignment, a GTF with annotated splice junctions is used to guide the alignments over splice juntions. In the 2-pass alignment, reads are mapped across the genome to identify novel splice junctions. These new annotations are then incorporated into the reference index and reads are re-aligned with this new reference. While more time-intensive, this step can aid in aligning across these junctions, especially in organisms where the transcriptome is not as well annotated. If mapping to a well-documented organism, this step can be forgone and STAR will use the GTF annotations to determine intronic regions of transcripts for read mapping.

XPRESSpipe Reference Requirements

An XPRESSpipe compatible reference directory must meet some requirements:

- All chromosomal genome fasta files are in their own directory within the parent reference directory. If a FASTA file with all chromosomes combined is available for your organism, this can be provided, but must be in its own directory.

- A sub-directory, named genome, contains the STAR reference files. If createReference is used to curate the reference, and the parent reference directory was provided as output location, this directory creation and file formatting will be handled automatically by XPRESSpipe.

- A transcript reference (GTF), is located in the reference parent directory and is named transcripts.gtf. If a coding-only or truncated reference GTFs are desired for read quantification, these should also be in this directory (truncate will handle file naming and formatting so long as the output location is specified as this parent directory). This file will then need to be specified within an XPRESSpipe pipeline.

Note

A completed reference directory can be created that follows these requirements by creating a directory, placing the transcripts.gtf and genomic chromosome fasta files in the parent directory and running curateReference as described below**

Get Sequence Files

The following is an example of how to get the reference files needed for generating a human reference:

$ mkdir human_reference
$ mkdir human_reference/genome_fasta
$ cd human_reference/
$ curl ftp://ftp.ensembl.org/pub/release-95/gtf/homo_sapiens/Homo_sapiens.GRCh38.95.gtf.gz -o transcripts.gtf.gz
$ for i in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y; do curl -O ftp://ftp.ensembl.org/pub/release-95/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.chromosome.${i}.fa.gz; done
$ gzip -d *.gz
$ mv *fasta genome_fasta

The chromosome IDs may vary depending on your organism.

Note

We recommend against using the toplevel Ensembl files. In our experience, this leads to RAM issues in STAR.

Perform Full Reference Curation

The following will create a XPRESSpipe-formatted reference directory containing all STAR reference files and transcript references needs for quantification and meta-analysis.

A parent reference directory containing the transcripts.gtf file and all chromosomal genome fasta files must be present.

More details as to what each specific parameter is doing can be found in the sections below.*

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe curateReference --help

	Required Arguments

	Description

	-o <path>, --output <path>

	Path to output directory

	-f <path>, --fasta <path>

	Path to genome fasta files (file names should end in .fa, .fasta, or .txt and no other files should exist in the directory with similar extensions)

	-g </path/transcripts.gtf>, --gtf </path/transcripts.gtf>

	Path and file name to transcript reference file names ‘transcripts.gtf’

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	-l, --longest_transcript

	Provide argument to keep only longest transcript per gene record (RECOMMENDED)

	-p, --protein_coding

	Provide argument to keep only gene records annotated as protein coding genes

	-t, --truncate

	Provide argument to truncate gene records

	--truncate_5prime

	Amount to truncate from 5’ end of each transcript, requires –truncate argument (default: 45)

	--truncate_3prime

	Amount to truncate from 3’ end of each transcript, requires –truncate argument (default: 15)

	--sjdbOverhang <value>

	Specify length of genomic sequences for constructing splice-aware reference. Ideal length is read length - 1, so for 2x100bp paired-end reads, you would use 100 - 1 = 99. However, the default value of 100 should work in most cases

	--genome_size <int>

	If mapping to an organism with a small genome, provide the length in nucleotides. If you are not sure your organism has a small genome, provide the number of bases and XPRESSpipe will decide if this parameter needs to be changed during runtime

	--ucsc_format

	Input GTF is UCSC/refseq formatted. This flag only pertains to GTF modification, such as end truncation, not to STAR curation processes. Errors related to STAR GTF formatting need to be separately addressed.

	-m

	Number of max processors to use for tasks (default: No limit)

Example 1: Create XPRESSpipe-formatted reference for single-end alignment

- Creates a star reference for single-end read mapping (1x50bp reads)

- Keeps the longest transcript for each gene record

- Keeps only protein_coding annotated transcripts

- Truncates the first 45 nucleotides from the first exon of every transcript (default)

- Truncates the last 15 nucleotides from the last exon of every transcript (default)

$ xpresspipe curateReference -o /path/to/se/ref/ -f /path/to/se/ref/ -g /path/to/se/ref/transcripts.gtf --longest_transcript --protein_coding --truncate --sjdbOverhang 49

Example 2: Create refFlat files

- Creates a star reference for paired-end read mapping (2x100bp reads)

- No modifications are made to the GTF file

- Processes are limited to 10 cores

$ xpresspipe curateReference -o /path/to/pe/ref/ -f /path/to/pe/ref/ -g /path/to/pe/ref/transcripts.gtf -m 10

STAR Reference Curation

The following creates a STAR reference compatible with XPRESSpipe. These files are output in a directory created during curation called genome in the specified --output directory.

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe makeReference --help

	Required Arguments

	Description

	-o <path>, --output <path>

	Path to output directory

	-f <path>, --fasta <path>

	Path to genome fasta files (file names should end in .fa, .fasta, or .txt and no other files should exist in the directory with similar extensions)

	-g </path/transcripts.gtf>, --gtf </path/transcripts.gtf>

	Path and file name to transcript reference file names ‘transcripts.gtf (DO NOT USE MODIFIED GTF HERE)’

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	--sjdbOverhang <int>

	Specify length of genomic sequences for constructing splice-aware reference. Ideal length is read length - 1, so for 2x100bp paired-end reads, you would use 100 - 1 = 99. However, the default value of 100 should work in most cases

	--genome_size <int>

	If mapping to an organism with a small genome, provide the length in nucleotides. If you are not sure your organism has a small genome, provide the number of bases and XPRESSpipe will decide if this parameter needs to be changed during runtime

	-m

	Number of max processors to use for tasks (default: No limit)

Example 1: Create a single-end sequencing reference

- Paths to output and location of genome fasta files for each chromosome are provided, as well as path and file name to transcripts.gtf file

- Default number of threads are used for preparing reference

$ xpresspipe makeReference -o /path/to/reference/ -f /path/to/reference/ -g /path/to/reference/transcripts.gtf --sjdbOverhang 49

Example 2: Create a paired-end sequencing reference

- 12 threads are specified for reference creation

- The as 2x100bp paired-end sequencing was used, the default value for --sjdbOverhang of 100 is appropriate in this case

$ xpresspipe makeReference -o /path/to/reference/ -f /path/to/reference/ -g /path/to/reference/transcripts.gtf -t 12

Example 3: Create a single-end sequencing reference for Saccharomyces cerevisiae

- Paths to output and location of genome fasta files for each chromosome are provided, as well as path and file name to transcripts.gtf file

- Default number of threads are used for preparing reference

- Genome size is specified

$ xpresspipe makeReference -o /path/to/reference/ -f /path/to/reference/ -g /path/to/reference/transcripts.gtf --sjdbOverhang 49 --genome_size 3000000

Reference Modification

At times, quantification of transcripts or CDSs to a modified reference is desirable. Below are some examples:

1. As ribosomal RNA (rRNA) contamination is common in RNA-seq, even when a depletion step was performed prior to library preparation, it is sometimes desirable to not count these and other non-coding RNAs in the quantification and analysis.

2. During ribosome profiling library preparation, where a 5’ and 3’ pile-up of ribosome footprints due to slow initiation and termination kinetics of footprints is common, it is suggested to exclude the first 45-50 nucleotides from the 5’ end and 15 nucleotides from the 3’ end of each CDS during quantification [https://www.cell.com/cms/10.1016/j.celrep.2016.01.043/attachment/257faf34-ff8f-4071-a642-bfdb531c75b8/mmc1]. This command will automatically curate an Ensembl GTF to meet these demands for read quantification. If a UCSC-formatted GTF is desired, users should supply the --ucsc-format flag; however, the --longest_transcript flag will not work with a UCSC-formatted GTF as longest transcript definitions are dependent on Ensembl annotations.

3. Several genes encode multiple isoforms or transcripts. During quantification, many software packages for counting reads to genes consider a read mapping to multiple transcripts of the same gene as a multi-mapper. Unless interested in alternate isoform usage, it is recommended that transcriptome reference files only contain the longest transcript for each gene.

The modifyGTF sub-module provides the ability to make the above-mentioned modifications to a GTF reference file. The modified GTF file is output at the end and the filename is labeled with the modifications made. Truncations to each transcript or CDS reference are strand-aware.

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe modifyGTF --help

	Required Arguments

	Description

	-g </path/transcripts.gtf>, --gtf </path/transcripts.gtf>

	Path and file name to reference GTF

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	-l, --longest_transcript

	Provide argument to keep only longest transcript per gene record (not necessary except in cases where the Ensembl canonical transcript is desired)

	-p, --protein_coding

	Provide argument to keep only gene records annotated as protein coding genes

	-t, --truncate

	Provide argument to truncate the CDSs of gene records

	--truncate_5prime

	Amount to truncate from 5’ end of each CDS, requires –truncate argument (default: 45)

	--truncate_3prime

	Amount to truncate from 3’ end of each CDS, requires –truncate argument (default: 15)

	--ucsc_format

	Input GTF is UCSC/refseq formatted. This flag only pertains to GTF modification, such as end truncation, not to STAR curation processes. Errors related to STAR GTF formatting need to be separately addressed.

	-m

	Number of max processors to use for tasks (default: No limit)

Example 1: Create longest transcript, protein coding-only, truncated reference

- Keeps the longest transcript for each gene record

- Keeps only protein_coding annotated transcripts

- Truncates the first 45 nucleotides from the first exon of every CDS (default)

- Truncates the last 15 nucleotides from the last exon of every CDS (default)

- Each modification desired must be implicitly passed to the sub-module

$ xpresspipe modifyGTF -g /path/to/reference/transcripts.gtf --longest_transcript --protein_coding --truncate

 Single-End RNA-seq Pipeline

Single-End RNA-seq Pipeline

The following pipeline will pre-process, align, and quality check single-end RNA-seq samples using the sub-modules discussed in earlier chapters. For more detailed information concerning these steps, please refer to the Align chapter.

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe seRNAseq --help

	Required Arguments

	Description

	-i <path>, --input <path>

	Path to input directory – if paired-end, file names should be exactly the same except for r1/r2.fastq or similar suffix

	-o <path>, --output <path>

	Path to output directory

	-r <path>, --reference <path>

	Path to parent organism reference directory

	-g </path/transcripts.gtf>, --gtf </path/transcripts.gtf>

	Path and file name to GTF used for alignment quantification (only used for HTSeq quantification)

	-e, --experiment

	Experiment name

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	--two-pass

	Use a two-pass STAR alignment for novel splice junction discovery

	-a <adapter1 ...> [<adapter1 ...> ...], --adapter <adapter1 ...> [<adapter1 ...> ...]

	Specify adapter(s) in list of strings – for single-end, only provide one adapter – if None are provided, software will attempt to auto-detect adapters – if “POLYX” is provided as a single string in the list, polyX adapters will be trimmed. If you want to auto-detect adapters in for paired-end reads, provide None twice

	-q <PHRED_value>, --quality <PHRED_value>

	PHRED read quality threshold (default: 28)

	--min_length <length_value>

	Minimum read length threshold to keep for reads (default: 17)

	--max_length <length_value>

	Maximum read length threshold to keep for reads (default: 0). Setting this argument to 0 will result in no upper length limit.

	--remove_rrna

	Provide flag to remove rRNA records from alignment files (BAM files)

	--front_trim <length>

	Number of base pairs to trim from the 5’ ends of reads (not available for polyX trimming) (default: 1)

	--umi_location <location>

	Provide parameter to process UMIs – provide location (if working with internal UMIs that need to be processed after adapter trimming, provide “3prime”; else see fastp documentation for more details, generally for single-end sequencing, you would provide ‘read1’ here; does not work with -a polyX option)

	--umi_length <length>

	Provide parameter to process UMIs – provide UMI length (must provide the –umi_location argument); does not work with -a polyX option)

	--spacer_length <length>

	Provide UMI spacer length, if exists. (default: 0)

	--no_multimappers>

	Include flag to remove multimapping reads to be output and used in downstream analyses

	--deduplicate

	Include flag to quantify reads with de-duplication (will search for files with suffix _dedupRemoved.bam)

	--output_bed

	Include flag to output BED files for each aligned file

	-c, --quantification_method

	Specify quantification method (default: htseq; other option: cufflinks. If using Cufflinks, no downstream sample normalization is required)

	--feature_type <feature>

	Specify feature type (3rd column in GTF file) to be used if quantifying with htseq (default: CDS)

	--stranded <fr-unstranded/fr-firststrand /fr-secondstrand||no/yes>

	Specify whether library preparation was stranded (Options before || correspond with Cufflinks inputs, options after correspond with htseq inputs)

	--method <RPM, RPKM, FPKM, TPM>

	Normalization method to perform (options: “RPM”, “TPM”, “RPKM”, “FPKM”) – if using either TPM, RPKM, or FPKM, a GTF reference file must be included

	--vcf </path/to/file.vcf>

	Provide full path and file name to VCF file if you would like detect personal variants overlapping alignments

	--batch </path/filename.tsv>

	Include path and filename of dataframe with batch normalization parameters

	--sjdbOverhang <sjdbOverhang_amount>

	Specify length of genomic sequences for constructing splice-aware reference. Ideal length is read length - 1, so for 2x100bp paired-end reads, you would use 100 - 1 = 99. However, the default value of 100 should work in most cases

	--mismatchRatio <mismatchRatio>

	Alignment ratio of mismatches to mapped length is less than this value. See STAR documentation for more information on setting this parameter

	--seedSearchStartLmax <seedSearchStartLmax>

	Adjusting this parameter by providing a lower number will improve mapping sensitivity (recommended value = 15 for reads ~ 25 nts). See STAR documentation for more information on setting this parameter

	genome_size

	Only needs to be changed if this argument was provided curing reference building AND using a two-pass alignment. This should be the length of the organism’s genome in nucleotides

	-m

	Number of max processors to use for tasks (default: No limit)

Example 1: Run pipeline on single-end RNA-seq sample files

$ xpresspipe seRNAseq \
 -i se_test \
 -o se_out \
 -r se_reference \
 --gtf transcripts_LC.gtf \
 -e se_test \
 -a CTGTAGGCACCATCAAT \
 --method TPM \
 --sjdbOverhang 49

 Paired-End RNA-seq Pipeline

Paired-End RNA-seq Pipeline

The following pipeline will pre-process, align, and quality check paired-end RNA-seq samples using the sub-modules discussed in earlier chapters. For more detailed information concerning these steps, please refer to the Align chapter.

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe peRNAseq --help

	Required Arguments

	Description

	-i <path>, --input <path>

	Path to input directory – if paired-end, file names should be exactly the same except for r1/r2.fastq or similar suffix

	-o <path>, --output <path>

	Path to output directory

	-r <path>, --reference <path>

	Path to parent organism reference directory

	-g </path/transcripts.gtf>, --gtf </path/transcripts.gtf>

	Path and file name to GTF used for alignment quantification (only used for HTSeq quantification)

	-e, --experiment

	Experiment name

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	--two-pass

	Use a two-pass STAR alignment for novel splice junction discovery

	-a <adapter1 ...> [<adapter1 ...> ...], --adapter <adapter1 ...> [<adapter1 ...> ...]

	Specify adapter(s) in list of strings – for single-end, only provide one adapter – if None are provided, software will attempt to auto-detect adapters – if “POLYX” is provided as a single string in the list, polyX adapters will be trimmed. If you want to auto-detect adapters in for paired-end reads, provide None twice

	-q <PHRED_value>, --quality <PHRED_value>

	PHRED read quality threshold (default: 28)

	--min_length <length_value>

	Minimum read length threshold to keep for reads (default: 17)

	--max_length <length_value>

	Maximum read length threshold to keep for reads (default: 0). Setting this argument to 0 will result in no upper length limit.

	--remove_rrna

	Provide flag to remove rRNA records from alignment files (BAM files)

	--front_trim <length>

	Number of base pairs to trim from the 5’ ends of reads (not available for polyX trimming) (default: 1)

	--umi_location <location>

	Provide parameter to process UMIs – provide location (see fastp documentation for more details, generally for single-end sequencing, you would provide ‘read1’ here; does not work with -a polyX option)

	--umi_length <length>

	Provide parameter to process UMIs – provide UMI length (must provide the –umi_location argument); does not work with -a polyX option)

	--spacer_length <length>

	Provide UMI spacer length, if exists. (default: 0)

	--no_multimappers>

	Include flag to remove multimapping reads to be output and used in downstream analyses

	--deduplicate

	Include flag to quantify reads with de-duplication (will search for files with suffix _dedupRemoved.bam)

	--output_bed

	Include flag to output BED files for each aligned file

	-c, --quantification_method

	Specify quantification method (default: htseq; other option: cufflinks. If using Cufflinks, no downstream sample normalization is required)

	--feature_type <feature>

	Specify feature type (3rd column in GTF file) to be used if quantifying with htseq (default: CDS)

	--stranded <fr-unstranded/fr-firststrand /fr-secondstrand||no/yes>

	Specify whether library preparation was stranded (Options before || correspond with Cufflinks inputs, options after correspond with htseq inputs)

	--method <RPM, RPKM, FPKM, TPM>

	Normalization method to perform (options: “RPM”, “TPM”, “RPKM”, “FPKM”) – if using either TPM, RPKM, or FPKM, a GTF reference file must be included

	--vcf </path/to/file.vcf>

	Provide full path and file name to VCF file if you would like detect personal variants overlapping alignments

	--batch </path/filename.tsv>

	Include path and filename of dataframe with batch normalization parameters

	--sjdbOverhang <sjdbOverhang_amount>

	Specify length of genomic sequences for constructing splice-aware reference. Ideal length is read length - 1, so for 2x100bp paired-end reads, you would use 100 - 1 = 99. However, the default value of 100 should work in most cases

	--mismatchRatio <mismatchRatio>

	Alignment ratio of mismatches to mapped length is less than this value. See STAR documentation for more information on setting this parameter

	--seedSearchStartLmax <seedSearchStartLmax>

	Adjusting this parameter by providing a lower number will improve mapping sensitivity (recommended value = 15 for reads ~ 25 nts). See STAR documentation for more information on setting this parameter

	genome_size

	Only needs to be changed if this argument was provided curing reference building AND using a two-pass alignment. This should be the length of the organism’s genome in nucleotides

	-m

	Number of max processors to use for tasks (default: No limit)

Example 1: Run pipeline on paired-end RNA-seq sample files

$ xpresspipe peRNAseq \
 -i pe_test \
 -o pe_out \
 -r pe_reference \
 --gtf transcripts.gtf \
 -e pe_test \
 -a AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC \
 --method TPM \
 --sjdbOverhang 100

 Ribosome Profiling Pipeline

Ribosome Profiling Pipeline

The following pipeline will pre-process, align, and quality check ribosome profiling samples using the sub-modules discussed in other sections of this documentation. For more detailed information concerning these steps, please refer to the Align chapter for the step you are interested in.

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe riboseq --help

	Required Arguments

	Description

	-i <path>, --input <path>

	Path to input directory – if paired-end, file names should be exactly the same except for r1/r2.fastq or similar suffix

	-o <path>, --output <path>

	Path to output directory

	-r <path>, --reference <path>

	Path to parent organism reference directory

	-g </path/transcripts.gtf>, --gtf </path/transcripts.gtf>

	Path and file name to GTF used for alignment quantification (only used for HTSeq quantification)

	-cdna_fasta </path/cdna_fasta.fa>

	Path and file name to reference cDNA FASTA file for P-site reference generation/location

	-e, --experiment

	Experiment name

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	--two-pass

	Use a two-pass STAR alignment for novel splice junction discovery

	-a <adapter1 ...> [<adapter1 ...> ...], --adapter <adapter1 ...> [<adapter1 ...> ...]

	Specify adapter(s) in list of strings – for single-end, only provide one adapter – if None are provided, software will attempt to auto-detect adapters – if “POLYX” is provided as a single string in the list, polyX adapters will be trimmed. If you want to auto-detect adapters in for paired-end reads, provide None twice

	-q <PHRED_value>, --quality <PHRED_value>

	PHRED read quality threshold (default: 28)

	--min_length <length_value>

	Minimum read length threshold to keep for reads (default: 17)

	--max_length <length_value>

	Maximum read length threshold to keep for reads (default: 0). Setting this argument to 0 will result in no upper length limit.

	--remove_rrna

	Provide flag to remove rRNA records from alignment files (BAM files)

	--front_trim <length>

	Number of base pairs to trim from the 5’ ends of reads (not available for polyX trimming) (default: 1)

	--umi_location <location>

	Provide parameter to process UMIs – provide location (if working with internal UMIs that need to be processed after adapter trimming, provide “3prime”; else see fastp documentation for more details, generally for single-end sequencing, you would provide ‘read1’ here; does not work with -a polyX option)

	--umi_length <length>

	Provide parameter to process UMIs – provide UMI length (must provide the –umi_location argument); does not work with -a polyX option)

	--spacer_length <length>

	Provide UMI spacer length, if exists. (default: 0)

	--no_multimappers>

	Include flag to remove multimapping reads to be output and used in downstream analyses

	--deduplicate

	Include flag to quantify reads with de-duplication (will search for files with suffix _dedupRemoved.bam)

	--output_bed

	Include flag to output BED files for each aligned file

	-c, --quantification_method

	Specify quantification method (default: htseq; other option: cufflinks. If using Cufflinks, no downstream sample normalization is required)

	--feature_type <feature>

	Specify feature type (3rd column in GTF file) to be used if quantifying with htseq (default: CDS)

	--stranded <fr-unstranded/fr-firststrand /fr-secondstrand||no/yes>

	Specify whether library preparation was stranded (Options before || correspond with Cufflinks inputs, options after correspond with htseq inputs)

	--method <RPM, RPKM, FPKM, TPM>

	Normalization method to perform (options: “RPM”, “TPM”, “RPKM”, “FPKM”) – if using either TPM, RPKM, or FPKM, a GTF reference file must be included

	--vcf </path/to/file.vcf>

	Provide full path and file name to VCF file if you would like detect personal variants overlapping alignments

	--batch </path/filename.tsv>

	Include path and filename of dataframe with batch normalization parameters

	--sjdbOverhang <sjdbOverhang_amount>

	Specify length of genomic sequences for constructing splice-aware reference. Ideal length is read length - 1, so for 2x100bp paired-end reads, you would use 100 - 1 = 99. However, the default value of 100 should work in most cases

	--mismatchRatio <mismatchRatio>

	Alignment ratio of mismatches to mapped length is less than this value. See STAR documentation for more information on setting this parameter

	--seedSearchStartLmax <seedSearchStartLmax>

	Adjusting this parameter by providing a lower number will improve mapping sensitivity (recommended value = 15 for reads ~ 25 nts). See STAR documentation for more information on setting this parameter

	genome_size

	Only needs to be changed if this argument was provided curing reference building AND using a two-pass alignment. This should be the length of the organism’s genome in nucleotides

	-m

	Number of max processors to use for tasks (default: No limit)

Example 1: Run pipeline on ribosome profiling sample files

$ xpresspipe riboseq \
 -i riboprof_test \
 -o ribopipe_out \
 -r se_reference \
 --gtf se_reference/transcript_CT.gtf \
 --cdna_fasta se_reference/cdna_seqs.fa \
 -e riboprof_test \
 -a CTGTAGGCACCATCAAT \
 --method RPM \
 --sjdbOverhang 49

Example 2: Run pipeline on ribosome profiling sample files with UMIs

If following a ribosome profiling protocol that utilizes 3’ UMIs (unique molecular identifiers), as in McGlincey, 2017 [https://pubmed.ncbi.nlm.nih.gov/28579404/], you will want to provide the relevant details to the riboseq sub-module. In this case, they use a 5 nucleotide UMI that is found at the 3’-end of each read, so the --umi_location 3prime and --umi_length 5 options should be used. If a UMI spacer is part of the UMI structure, this can be provided with the --umi_spacer option with the spacer length as input.

$ xpresspipe riboseq \
 -i riboprof_test \
 -o ribopipe_out \
 -r se_reference \
 --gtf se_reference/transcript_CT.gtf \
 --cdna_fasta se_reference/cdna_seqs.fa \
 -e riboprof_test \
 -a CTGTAGGCACCATCAAT \
 --method RPM \
 --sjdbOverhang 49 \
 --umi_location 3prime \
 --umi_length 5 \
 --umi_spacer 0

 Quality Control

Quality Control

Read Distribution Analysis

When performing RNA-seq, your sequencing library population is important to assess to ensure a quality sequencing run. Unexpected populations can be indicative of RNA degradation or other effects. In ribosome profiling, the expected footprint size is ~28-30 nucleotides, so you would expect a peak in this region when running your analysis. The following module will run read distribution analysis for all fastq samples within a given directory. It is recommended this analysis be performed on trimmed reads to clean up adapters and get the true distribution of sequence reads in the library. When this is run within the pipeline, it will analyze just the post-trimming fastq files.

Additionally, if running one of XPRESSpipe’s pipelines, you can refer to the MultiQC html file for general summary statistics, which include read length distributions for all samples.

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe readDistribution --help

	Required Arguments

	Description

	-i <path>, --input <path>

	Path to input directory of trimmed fastq (or untrimmed fastq) files

	-o <path>, --output <path>

	Path to output directory

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	-t <SE or PE>, --type <SE or PE>

	Sequencing type (“SE” for single-end, “PE” for paired-end)

	-e <experiment_name>, --experiment <experiment_name>

	Experiment name

	-m

	Number of max processors to use for tasks (default: No limit)

Example 1: Analyze read distributions from ribosome profiling libraries

$ xpresspipe readDistribution -i riboprof_out/trimmed_fastq -o riboprof_out -e se_test

[image: ../_images/se_test_fastqc_summary.png]

Metagene Analysis

Analyze each sequencing sample to ensure equal distribution of reads across all transcripts. Can be useful in identifying 5’ or 3’ biases in sequence preparation.

Requires a transcriptome-mapped BAM files, which can be output by STAR [https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf] and are automatically output during any XPRESSpipe alignment run.

$ xpresspipe metagene --help

	Required Arguments

	Description

	-i <path>, --input <path>

	Path to input directory of transcriptome-mapped BAM files

	-o <path>, --output <path>

	Path to output directory

	-g </path/transcripts.gtf>, --gtf </path/transcripts.gtf>

	Path and file name to un-modified reference GTF

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	-e <experiment_name>, --experiment <experiment_name>

	Experiment name

	--feature_type <feature_type>

	Specify feature type (3rd column in GTF file) to be used in calculating metagene coverage (default: exon; alternative: CDS)

	--bam_suffix <suffix>

	Change from default suffix of toTranscriptome.out.bam if transcriptome-mapped files were processed outside of XPRESSpipe

	-m <processors>, --max_processors <processors>

	Number of max processors to use for tasks (default: No limit)

Example 1: Analyze metagene profiles of sequence libraries

- Use default transcript reference (maps to all transcripts, even if non-coding)

$ xpresspipe metagene -i riboprof_out/alignments/ -o riboprof_out -g se_reference/transcripts.gtf -e se_test

[image: ../_images/se_test_metagene_summary.png]

Note

As you can probably see, there are systematic 5’ biases in these library preparations. A good RNA-seq library should generally have even coverage across all transcript positions.

Intron-collapsed Gene Coverage Analysis

Plot the coverage of a given gene for a sample or set of samples with introns collapsed.

$ xpresspipe geneCoverage --help

	Required Arguments

	Description

	-i <path>, --input <path>

	Path to input directory of transcriptome-aligned BAM files

	-o <path>, --output <path>

	Path to output directory

	-g </path/transcripts.gtf>, --gtf </path/transcripts.gtf>

	Path and file name to reference GTF

	-n <gene_name>, --gene_name <gene_name>

	Gene name (case sensitive)

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	-e <experiment_name>, --experiment <experiment_name>

	Experiment name to save output summaries as

	--bam_suffix <suffix>

	Change from default suffix of toTranscriptome.out.bam if using a different BAM file

	--type <type>

	Record type to map across (i.e. “exon”, “CDS”) (case-sensitive)

	--samples <sample_list> [<sample_list> ...]

	Provide a space-separated list of sample names to include in analysis (will only include those listed, and will plot in the order listed)

	--sample_names <suffix>

	Provide a space-separated list of sample names to use for labels

	--plot_color <color>

	Indicate plotting color

	-m <processors>, --max_processors <processors>

	Number of max processors to use for tasks (default: No limit)

Example 1: Analyze gene coverage profile of sequence libraries

- Use default transcript reference (will generate a longest transcript-only reference)

- Analyze SLC1A1

- Analyze along chosen record type (default: exon, but could also use CDS if looking at ribosome profiling data)

- Analyzing BAM files ending in sort.bam

- Specifying names to use in plotting – if not using --samples, these files will be plotted alphabetically, so the listed order should also be alphabetical. If using --samples, need to specify names in the same order you provided for this argument.

$ xpresspipe geneCoverage -i /path/to/bam_files -o ./ -g /path/to/reference.gtf \
 -n SLC1A1 --type exon --bam_suffix .sort.bam \
 --sample_names SRR1795425 SRR1795433 SRR1795435 SRR1795437

[image: ../_images/geneCoverage_IGV_comparison.png]

Note

The coverage estimations use a 20 nt rolling window mean method to smoothen the coverage plots. In both A and B in the image above, the top plot was generated with IGV (https://software.broadinstitute.org/software/igv/) and the bottom with xpresspipe geneCoverage. Green boxes show approximately the same region for comparison.

P-site Analysis

Analyze P-Sites. Useful in ribosome profiling samples for identifying that ribosomes are taking the expected 3 nucleotide steps along a transcript. If this is not apparent from the analysis, it may be indicative of poor sequence coverage of the ribosome profiling libraries.

$ xpresspipe p_sites --help

	Required Arguments

	Description

	-i <path>, --input <path>

	Path to input directory of transcriptome-aligned BAM files

	-o <path>, --output <path>

	Path to output directory

	-g </path/transcripts.gtf>, --gtf </path/transcripts.gtf>

	Path and file name to reference GTF

	-cdna_fasta </path/cdna_fasta.fa>

	Path and file name to reference cDNA FASTA file for P-site reference generation/location

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	--min_length <length_value>

	Minimum read length threshold to keep for reads (default: 17)

	--max_length <length_value>

	Maximum read length threshold to keep for reads (default: 0). Setting this argument to 0 will result in no upper length limit.

	-e <experiment_name>, --experiment <experiment_name>

	Experiment name to save output summaries as

	--bam_suffix <suffix>

	Change from default suffix of toTranscriptome.out.bam if using a different BAM file

	-m <processors>, --max_processors <processors>

	Number of max processors to use for tasks (default: No limit)

Example 1: Analyze P-sites from ribosome profiling libraries

$ xpresspipe p_sites \
 -i riboprof_out/alignments \
 -o riboprof_out \
 -g se_reference/transcripts.gtf \
 -e se_test

 Analysis

Analysis

Differential Expression Analysis

Differential Expression analysis allows one to determine significantly enriched or depleted genes between two conditions. XPESSpipe acts as a wrapper for DESeq2 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302049/]. Please refer to its documentation [https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html] for more information.

Note

If intending to use the diffxpress sub-module, you need to have used --quantification_method htseq during read quantification as DESeq2 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302049/] requires integer count data.

Requirements:

- R is installed on your machine and is in your $PATH (this should be handled in the installation)

- All input files are tab-delimited (with .txt or .tsv suffix)

- Design formula does not include the tilde (~) and there are no spaces

Sample Factor Files

Different factors to be evaluated in the differential expression analysis should each be denoted as a separate factor column in the sample_info file. For example, if you were

evaluating a experimental vs control experiment for RNA-sequencing, you would provide a sample_info file as follows:

sample_info.txt

 Sample Condition
 s1_rna a_WT
 s2_rna a_WT
 s3_rna b_EXP
 s4_rna b_EXP

Your base (denominator) parameter in a given factor column in the sample_info file must be first alphabetically. In the case provided above, we want to compare the experimental condition VS the wild-type control condition, however these labels are not alphabetical. In this case, you can append letters to the beginning to force alphabetical order. For example, if you performed a experiment vs wild-type experiment, you would need to use the labels b_experiment vs a_wild-type to force a b_experiment / a_wild-type comparison.

If we want to consider additional factors, such as translation efficiency of footprint vs RNA-sequence samples for ribosome profiling, these should be included as additional factor columns in the sample_info file. Since we want to perform another comparison with the footprint vs RNA-sequencing samples, we need to again ensure that these labels for this “Type” factor are listed in the correct alphabetical order to ensure we are performing a footprint VS RNA-sequencing comparison to reflect translation efficiency.

sample_info.txt

 Sample Condition Type
 s1_fp a_WT RPF
 s1_rna a_WT RNA
 s2_fp a_WT RPF
 s2_rna a_WT RNA
 s3_fp b_EXP RPF
 s3_rna b_EXP RNA
 s4_fp b_EXP RPF
 s4_rna b_EXP RNA

The alphabetical order of the factor names (i.e., “Condition”, “Type”) does not matter. Instead, according to the DESeq2 documentation, these design factors are evaluated in the order listed [https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#the-deseqdataset].

The DESeq2 design formula specifies what is being modeled from the data.

Note

As stated in the DESeq2 documentation:
With no additional arguments to results, the log2 fold change and Wald test p value will be for the last variable in the design formula, and if this is a factor, the comparison will be the last level of this variable over the reference level (see previous note on factor levels). However, the order of the variables of the design do not matter so long as the user specifies the comparison to build a results table for, using the name or contrast arguments of results.

So, in the case of Type+Condition+Type:Condition where we are interesting in testing the difference in translation efficiencies between conditions, the interaction Type:Condition is the coefficient being tested for differential expression. The model as designed will also account for differences only seen in the Type or Condition co-variates alone (for example, a specific bias to ribosome footprints vs. mRNA fragments).

For more information on factor levels and design parameters, please see the DESeq2 documentation [https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#multi-factor-designs] and this note [https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#can-i-run-deseq2-to-contrast-the-levels-of-many-groups]. Any standard design formula that will work in DESeq2 will work within the XPRESSpipe wrapper, as long as the formatted described above is followed.

Other possible variations to DESeq2 analysis are available here [https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#variations-to-the-standard-workflow], but not all will be compatible with the XPRESSpipe wrapper. In general, the XPRESSpipe wrapper is best suited to simple multi-factor design (Experimental vs Wild-type, Footprints vs RNA-sequencing, plus any other factors relevant to your experiment). For advice in preparing your design formula differently than in the examples listed below, please reach out to us here [https://github.com/XPRESSyourself/XPRESSpipe/issues].

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe diffxpress --help

	Required Arguments

	Description

	-i <path/filename.tsv>, --input <path/filename.tsv>

	Path and file name of expression counts matrix

	-s <path/filename.tsv>, --sample <path/filename.tsv>

	Path and file name of sample information matrix

	--design <formula>

	Design formula for differential expression analysis (spaces in command line are conserved in input string. DO NOT INCLUDE ~ OR SPACES IN FORMULA IN COMMAND LINE, will be automatically added)

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	--shrink

	Provide argument to perform shrinkage of effect size on log fold changes. Useful for visualization and ranking of hits

Example 1: Analyze ribosome profiling data

The source files can be found here [https://github.com/XPRESSyourself/xpressyourself_manuscript/tree/main/isrib_analysis/isrib_de/xpresspipe_data_deseq2].

If we want to perform differential expression of translation efficiency for ribosome profiling data, we need to provide Condition and Type factor columns in the sample_info file. If we want to include the RPF / RNA comparison to account for translation efficiency, we would need to include these factor label as a column to ensure the appropriate RPF / RNA evaluation. To perform a comparison between Tm-treated and Untreated cells, we will provide the TM and UNTR labels for the Condition factor. With the provided design formula used below, we will be calculating:

\(\frac{ (RPF _{\textit{TM}} / RNA _{\textit{TM}}) } { (RPF _{\textit{UNTR}} / RNA _{\textit{UNTR}}) }\)

tm_counts.tsv

 ribo_untr_a ribo_untr_b ribo_tm_a ribo_tm_b untr_a_hek untr_b_hek tm_a_hek tm_b_hek
A1BG 29 43 21 11 67 73 56 85
A2M 3 5 2 2 73 57 32 37
AAAS 1441 1981 934 601 1144 1067 1012 1124
AACS 575 727 310 192 351 335 220 291
AADAT 98 120 51 29 322 315 192 292

tm_deseq.txt

Sample Condition Type
untr_a_hek UNTR RNA
untr_b_hek UNTR RNA
ribo_untr_a UNTR RPF
ribo_untr_b UNTR RPF
tm_a_hek TM RNA
tm_b_hek TM RNA
ribo_tm_a TM RPF
ribo_tm_b TM RPF

$ xpresspipe diffxpress -i counts_data.tsv --sample sample_info.txt --design Type+Condition+Type:Condition

The output of this analysis will perform differential expression that reflects both TM vs UNTR and RPF (footprints) vs RNA.

tm_counts_diffx.tsv

 baseMean log2FoldChange lfcSE stat pvalue padj
ATF4 3283.072674 2.542784311 0.134284453 18.93580577 5.78E-80 5.03E-76
PTP4A1 460.6444433 2.473962772 0.185061193 13.36834986 9.26E-41 4.03E-37
SPEN 7902.554413 1.192124338 0.109445545 10.89239713 1.25E-27 3.63E-24
RPS15A 1823.967865 -1.391099082 0.152069954 -9.147757652 5.81E-20 1.26E-16
DYNC1H1 11985.60418 0.85282198 0.094425503 9.031691164 1.69E-19 2.56E-16

From this output, we can focus on the log2FoldChange and padj columns. From this output, we see that ATF4 is the most significantly upregulated gene by translation efficiency between the TM and UNTR conditions, which is what we expect (see the XPRESSyourself manuscript [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007625] for further discussion of this example). Further explanations of the other columns of this output can be found in the DESeq2 documentation [https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html].

Example 2: Analyze RNA-seq data

For a standard two-condition RNA-seq experiment comparison, we are only interested in the differential expression of EXP vs WT. To ensure this comparison if performed correctly, we need to force these Condition factor labels to be alphabetical. We will thus rename them b_EXP and a_WT and do the following:

expression_counts.tsv

 s1 s2 s3 s4 ...
ENSG00000227232 66 59 1 82 ...
ENSG00000240361 35 0 7 72 ...
ENSG00000238009 20 70 85 78 ...
ENSG00000241860 96 7 93 38 ...
ENSG00000187634 73 41 92 77 ...

sample_info.tsv

Sample Condition
s1 a_WT
s2 a_WT
s3 a_WT
s4 a_WT
s5 b_EXP
s6 b_EXP
s7 b_EXP
s8 b_EXP

$ xpresspipe diffxpress -i test_r/test_dataset.tsv --sample test_r/sample_info.tsv --design Condition

Example 3: Analyze RNA-seq data that was prepared in different batches

If samples were performed in multiple batches and you would like to control for batch effect, you can add a Batch factor column and provide different batch labels. This example below will control for batch effect and compare EXP vs WT expression.

See the DESeq2 documentation example [https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#quick-start] for further information.

expression_counts.tsv

 s1 s2 s3 s4 ...
ENSG00000227232 66 59 1 82 ...
ENSG00000240361 35 0 7 72 ...
ENSG00000238009 20 70 85 78 ...
ENSG00000241860 96 7 93 38 ...
ENSG00000187634 73 41 92 77 ...

sample_info.tsv

Sample Condition Batch
s1 a_WT batch1
s2 a_WT batch1
s3 a_WT batch1
s4 a_WT batch1
s5 b_EXP batch2
s6 b_EXP batch2
s7 b_EXP batch2
s8 b_EXP batch2

$ xpresspipe diffxpress -i test_r/test_dataset.tsv --sample test_r/sample_info.tsv --design Batch+Condition

rRNA Probe

Ribosome RNA (rRNA) contamination is common in RNA-seq library preparation. As the bulk of RNA in a cell at any given time is dedicated to rRNA, and as these rRNA sequences are relatively few and therefore highly repeated, depletion of these sequences is often desired in order to have better depth of coverage of non-rRNA sequences. In order to facilitate this depletion, many commercial kits are available that target specific rRNA sequences for depletion, or that enrich mRNA polyA tails. However, and especially in the case of ribosome profiling experiments, where RNA is digested to create ribosome footprints that commercial depletion kits won’t detect and polyA selection kits are inoperable as footprints will not have the requisite polyA sequence. To this end, custom rRNA probes [https://www.ncbi.nlm.nih.gov/pubmed/28579404] are recommended, and the rrnaProbe sub-module was designed to facilitate this process.

rrnaProbe works by doing the following:

1. Run FASTQC to detect over-represented sequences

2. Collate these sequences to determine consensus fragments

3. Output rank ordered list of over-represented fragments within the appropriate length range to target for depletion

NOTE: BLAST capability to verify over-represented consensus fragments are indeed rRNA sequences is not yet incorporated, so any sequences that will be used as probes should be BLAST-verified first.

$ xpresspipe rrnaProbe --help

	Required Arguments

	Description

	-i <path>, --input <path>

	Path to zipped FASTQC files

	-o </path/filename>, --output </path/filename>

	Path and file name to write output

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	-m <value>, --min_overlap <value>

	Minimum number of bases that must match on a side to combine sequences (default: 5)

	--footprint_only

	Only take zip files that are ribosome profiling footprints (file names must contain “FP”, “RPF”, or “FOOTPRINT”)

Example 1: Generate rank-ordered list of over-represented sequences

$ xpresspipe rrnaProbe -i riboprof_out/fastqc_out/ -o riboprof_out/sequences.txt --footprint_only

TTGATGATTCATAATAACTTTTCGAATCGCAT 514832
TATAAATCATTTGTATACGACTTAGAT 121739
TTGATGATTCATAATAACTTTTCGAATCGCAT 15776
TTTGATGATTCATAATAACTTTTCGAATCGCAC 33325
ATAAATCATTTGTATACGACTTAGAC 13603

 Read Pre-Processing

Read Pre-Processing

Read Trimming

Trimming is a necessary part of RNAseq data processing due to the technological limitations described below:

- Inherent in RNA-seq library creation, RNA is fragmented and adapter sequences are ligated to the sequence. These adapters include information such as sample batch and act as a primer for the sequencer to recognize the fragment as something to analyze. However, these adapters, once sequenced, prevent alignment to a reference as large chunks of the fragment are synthetic sequence not found in the actual organism’s genome/transcriptome.

- A sequencer’s job is to read a fragment base by base and determine the nucleotide species each step of the way. While the technology has greatly improved over the years, a probability of error remains. Mis-called bases can prevent proper alignment of the sequenced fragment to the reference. Therefore, it is important for low confidence base calls to be trimmed from each read.

Trimming is performed by fastp [https://github.com/OpenGene/fastp].

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe trim --help

	Required Arguments

	Description

	-i <path>, --input <path>

	Path to input directory – if paired-end, file names should be exactly the same except for r1/r2.fastq or similar suffix

	-o <path>, --output <path>

	Path to output directory

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	-a <adapter1 ...> [<adapter1 ...> ...], --adapter <adapter1 ...> [<adapter1 ...> ...]

	Specify adapter(s) in list of strings – for single-end, only provide one adapter – if None are provided, software will attempt to auto-detect adapters – if “POLYX” is provided as a single string in the list, polyX adapters will be trimmed. If you want to auto-detect adapters in for paired-end reads, provide None twice

	-q <PHRED_value>, --quality <PHRED_value>

	PHRED read quality threshold (default: 28)

	--min_length <length_value>

	Minimum read length threshold to keep for reads (default: 17)

	--max_length <length_value>

	Maximum read length threshold to keep for reads (default: 0). Setting this argument to 0 will result in no upper length limit.

	--front_trim <length>

	Number of base pairs to trim from the 5’ ends of reads (not available for polyX trimming) (default: 1)

	--umi_location <location>

	Provide parameter to process UMIs – provide location (if working with internal UMIs that need to be processed after adapter trimming, provide “3prime”; else see fastp documentation for more details, generally for single-end sequencing, you would provide ‘read1’ here; does not work with -a polyX option)

	--umi_length <length>

	Provide parameter to process UMIs – provide UMI length (must provide the –umi_location argument); does not work with -a polyX option)

	--spacer_length <length>

	Provide UMI spacer length, if exists. (default: 0)

	-m

	Number of max processors to use for tasks (default: Max)

Example 1: Trim ribosome profiling sequence data using default preferences

- Raw reads are fastq-like and found in the -i riboprof_test/ directory. Can be uncompressed or compressed via gz or zip

- A general output directory has been created, -o riboprof_out/

- All other arguments use the default value

$ xpresspipe trim -i riboprof_test/ -o riboprof_out/

Example 2: Predict adapter and trim ribosome profiling sequence data

- A minimum read length of 22 nucleotides after trimming is required in order to keep the read

- A maximum or 6 processors can be used for the task

- The --adapters argument was not passed, so an attempt to discover adapter sequences will be made (this is not always the most efficient or thorough method of trimming and providing the adapter sequences is recommended)

$ xpresspipe trim -i riboprof_test/ -o riboprof_out/ --min_length 22 -m 6

Example 3: Trim adapter from ribosome profiling reads

- The default minimum read length threshold will be used

- The maximum number of processors will be used by default

- The --adapters argument was passed, so adapter sequences will trimmed explicitly

$ xpresspipe trim -i riboprof_test/ -o riboprof_out/ -a CTGTAGGCACCATCAAT

Example 4: Predict adapter and trim paired-end sequence data

- The --adapters argument was passed as None None, so an attempt to discover adapter sequences will be made for paired-end reads. The -a None None syntax is essential for trim to recognize the reads as paired-end

$ xpresspipe trim -i pe_test/ -o pe_out/ -a None None

Example 5: Pass explicit adapter and trim paired-end sequence data

- The --adapters argument was passed, so adapter sequences will trimmed explicitly

$ xpresspipe trim -i pe_test/ -o pe_out/ -a ACACTCTTTCCCTACACGACGCTCTTCCGATC GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG

Example 6: Trim single-end sequence data of polyX adapters

- The --adapters POLYX argument was passed, so adapter sequences will trimmed of polyX sequences

$ xpresspipe trim -i se_test/ -o se_out/ -a POLYX

Example 7: Trim adapter from ribosome profiling reads and process UMIs

- The default minimum read length threshold will be used

- The maximum number of processors will be used by default

- The --adapters argument was passed, so adapter sequences will trimmed explicitly

- The --umi_location argument was passed, so adapter sequences will trimmed of UMI sequences from, in this case, the 3’-end of reads

- The --umi_length argument was passed, so adapter sequences will process UMIs as 5 nucleotides long in this case

$ xpresspipe trim \
 -i riboprof_test/ \
 -o riboprof_out/ \
 -a CTGTAGGCACCATCAAT \
 --umi_location 3prime \
 --umi_length 5

 Alignment

Alignment

In order to quantify transcription on a transcript to transcript basis, individual reads called during sequencing must be mapped to the genome. While there are multiple alignment software packages available, XPRESSpipe uses a current version of STAR [https://github.com/alexdobin/STAR] to perform this step in transcription quantification for several reasons:

- Performance: While computationally greedy (a human genome alignment requires upwards of 30 Gb RAM), the performance and accuracy is superior to the majority of other splice aware aligners currently available [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792058/]

- Splice Junction Aware: STAR is capable of mapping reads spanning a splice junction, where more traditional packages, such as Bowtie, are incapable of doing so and are better suited for tasks such as genome alignment.

- Standardized: The foundation of the pipeline used in XPRESSpipe is based in the TCGA [https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/] standards for RNAseq alignment. This method utilizes a guided or 2-pass alignment program. In the guided alignment, a GTF with annotated splice junctions is used to guide the alignments over splice juntions. In the 2-pass alignment, reads are mapped across the genome to identify novel splice junctions. These new annotations are then incorporated into the reference index and reads are re-aligned with this new reference. While more time-intensive, this step can aid in aligning across these junctions, especially in organisms where the transcriptome is not as well annotated.

- Variant Aware: The user can provide a VCF, such as those provided by ClinVar [ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/] and dbSNP [ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/]. These files are useful in integrating information about common or disease nucleotide variants into the RNA-Seq alignment stage. The files you use should match the build of the genome you are using (i.e., if using Homo Sapiens GRCh38, these builds should match between curated reference files and VCF file).

Note

rRNA depletion using the --remove_rrna option removes rRNA alignments from BAM files. This works by generating a BED file behind the scenes for rRNA transcripts, and removing them from the genome-aligned BAM file using bedtools intersect. For transcriptome-aligned BAM files, a modified GTF file is generated for this step only with rRNA records removed in order to prevent their transcript mapping during this step.

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe align --help

	Required Arguments

	Description

	-i <path>, --input <path>

	Path to input directory

	-o <path>, --output <path>

	Path to output directory

	-r <path>, --reference <path>

	Path to parent organism reference directory (must have a file called transcripts.gtf within)

	-t <SE or PE>, --type <SE or PE>

	Sequencing type (“SE” for single-end, “PE” for paired-end)

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	--two-pass

	Use a two-pass STAR alignment for novel splice junction discovery

	--remove_rrna

	Provide flag to remove rRNA records from alignment files (BAM files)

	--no_multimappers>

	Include flag to remove multimapping reads to be output and used in downstream analyses

	--deduplicate

	Include flag to quantify reads with de-duplication (will search for files with suffix _dedupRemoved.bam)

	--vcf </path/to/file.vcf>

	Provide full path and file name to VCF file if you would like detect personal variants overlapping alignments

	--output_bed

	Include flag to output BED files for each aligned file

	--sjdbOverhang <sjdbOverhang_amount>

	Specify length of genomic sequences for constructing splice-aware reference. Ideal length is read length - 1, so for 2x100bp paired-end reads, you would use 100 - 1 = 99. However, the default value of 100 should work in most cases

	--mismatchRatio <mismatchRatio>

	Alignment ratio of mismatches to mapped length is less than this value. See STAR documentation for more information on setting this parameter

	--seedSearchStartLmax <seedSearchStartLmax>

	Adjusting this parameter by providing a lower number will improve mapping sensitivity (recommended value = 15 for reads ~ 25 nts). See STAR documentation for more information on setting this parameter

	genome_size

	Only needs to be changed if this argument was provided curing reference building AND using a two-pass alignment. Enter the size of your organism’s genome in nucleotides

	-m

	Number of max processors to use for tasks (default: No limit)

Single-End RNAseq Alignment

The following runs single-end reads alignment using the specified XPRESSpipe-formatted reference directory.

Notes:

- For the --sjdbOverhang argument, the same value should be entered that was used when creating the STAR reference files.

- Ribosome profiling data can be run as a single-end RNA-seq

Example 1: Single-end RNAseq alignment

- Raw reads are fastq-like and found in the -i /path/to/input/files/ directory. Can be uncompressed or compressed via gz or zip

- A general output directory has been created, -o riboseq_out/

- --type is specified as ‘SE’ and path to parent reference directory is provided

- The value for --sjdbOverhang used in reference creation is provided. Failure to do so will trigger an error

- BED and BIGWIG files will be output in their own directories in output

- All other arguments use the default value

$ xpresspipe align -i /path/to/input/files/ -o riboseq_out/ -t SE -r /path/to/reference/ --sjdbOverhang 49 --output_bed --output_bigwig

Paired-End RNAseq Alignment

The following runs paired-end reads alignment using the specified XPRESSpipe-formatted reference directory.

Notes:

- For the --sjdbOverhang argument, the same value should be entered that was used when creating the STAR reference files.

Example 1: Paired-end RNAseq alignment

- Raw reads are fastq-like and found in the -i pe_test/ directory. Can be uncompressed or compressed via gz or zip

- A general output directory has been created, -o pe_out/

- --type is specified as ‘PE’ and path to parent reference directory is provided

- The value for --sjdbOverhang used in reference creation is provided. Failure to do so will trigger an error. In this case, since the reference was created using default values, the optional flag is not used

- BED and BIGWIG files are not output

- All other arguments use the default value

$ xpresspipe align -i /path/to/input/files/ -o riboseq_out -t PE -r /path/to/reference/

 Read Quantification

Read Quantification

Quantifying and Collating Reads

In order to quantify aligned reads, they must be counts to a reference transcriptome. This will tell you in relative terms how much of each transcript is expressed in a system. The following sub-module will perform this quantification, as well as compile all sample quantifications into a single data matrix for downstream use.

XPRESSpipe uses Cufflinks [http://cole-trapnell-lab.github.io/cufflinks/] as the default, but HTSeq [https://htseq.readthedocs.io/en/release_0.11.1/] can also be specified. Cufflinks is one of the most accurate read quantifiers currently available, but HTSeq is still widely used and is part of the TCGA [https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/] pipeline.

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe count --help

	Required Arguments

	Description

	-i <path>, --input <path>

	Path to input directory of SAM files

	-o <path>, --output <path>

	Path to output directory

	-g </path/transcripts.gtf>, --gtf </path/transcripts.gtf>

	Path and file name to GTF used for alignment quantification (if a modified GTF was created, this should be provided here; if using Cufflinks and you want isoform abundance estimates, important that you do not provide a longest transcript only GTF)

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	-e, --experiment

	Experiment name

	-c, --quantification_method

	Specify quantification method (default: htseq; other option: cufflinks. If using Cufflinks, no downstream sample normalization is required)

	--feature_type <feature>

	Specify feature type (3rd column in GTF file) to be used if quantifying with htseq (default: CDS)

	--stranded <fr-unstranded/fr-firststrand /fr-secondstrand||no/yes>

	Specify whether library preparation was stranded (Options before || correspond with Cufflinks inputs, options after correspond with htseq inputs)

	--deduplicate

	Include flag to quantify reads with de-duplication (will search for files with suffix _dedupRemoved.bam)

	--bam_suffix

	Change from default suffix of _Aligned.sort.bam

	-m

	Number of max processors to use for tasks (default: No limit)

Example 1: Count ribosome profiling alignments

- Input points to directory with SAM alignment files that are sorted by name

- An experiment name is provided to name the final data matrix

- Reads are quantified only to coding genes and are not counted if mapping to the first x nucleotides of each transcript exon 1 (x being the value provided for truncation when initially creating the reference files)

$ xpresspipe count -i riboseq_out/alignments/ -o riboseq_out/ -r se_reference/ -g se_reference/transcripts_codingOnly_truncated.gtf -e se_test

Example 2: Count paired-end alignments

- Input points to directory with SAM alignment files that are sorted by name

- An experiment name is not provided and a default name is given to the data matrix using datatime

- Reads are quantified to the entire transcriptome (coding and non-coding, no truncation)

$ xpresspipe count -i pe_out/alignments/ -o pe_out/ -r pe_reference/

 Normalize

Normalize

Note: Sample and batch normalization can be performed in a single command. If this is done, batch normalization will be performed following sample normalization.

Sample Normalization

Due to inherent biases in RNA-seq samples (most commonly, different amounts of total RNA per sample in a given lane), samples must be normalized to obtain an accurate representation of transcription per sample. Additional normalization can be performed to normalize for transcript length (“per kilobase million”) as longer transcripts will naturally create more fragments mapping to a given gene, thus potentially making 1 transcript appear as many when quantified.

Assumptions

- R is installed on your machine and is in your $PATH if using the batch argument

- All input files are tab-delimited (with .txt or .tsv suffix)

Normalization Methods

The following equations summarize different way to normalize samples for RNA-seq:

Reads per Million

\(RPM_{g} = \frac{1e6 \cdot r_{\textit{ge}}}{\sum_{g=1}^{n} r_{\textit{ge}}}\)

Reads per Kilobase of Reads per Million

\(RPKM_{g} = \frac{1e9 \cdot r_{\textit{ge}}}{(\sum_{g=1}^{n} r_{\textit{ge}}) \cdot \textit{l} _{\textit{ge}}}\)

Fragments per Kilobase of Fragments per Million

\(FPKM_{g} = \frac{1e9 \cdot f_{\textit{ge}}}{(\sum_{g=1}^{n} f_{\textit{ge}}) \cdot \textit{l} _{\textit{ge}}}\)

Transcripts per Million (same as RPKM, but order of operations is different)

\(TPM_{g} = \frac{1e6 \cdot r_{\textit{ge}}}{(\sum_{g=1}^{n} (\frac{1e3 \cdot r_{\textit{ge}}}{l_{\textit{ge}}})) \cdot \textit{l} _{\textit{ge}}}\)

In each of the above, assume g is gene n, ge is cumulative exon space for gene n, r is total reads, f is total fragments, and l is length

Batch Correction

When multiple people perform library preparation, or when libraries are prepared on different days, this can lead to inherent biases in count distributions between batches of samples. It is therefore necessary to normalize these effects when appropriate.

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe normalizeMatrix --help

	Required Arguments

	Description

	-i <path/filename.tsv>, --input <path/filename.tsv>

	Path and file name of expression counts matrix

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	--method <RPM, RPKM, FPKM, LOG>

	Normalization method to perform (options: “RPM”, “TPM”, “RPKM”, “FPKM”) – if using either TPM, RPKM, or FPKM, a GTF reference file must be included

	-g </path/transcripts.gtf>, --gtf </path/transcripts.gtf>

	Path and file name to reference GTF (RECOMMENDED: Do not use modified GTF file)

	--batch </path/filename.tsv>

	Include path and filename of dataframe with batch normalization parameters

Example 1: Perform RPKM normalization on single-end RNA-seq data

$ xpresspipe normalizeMatrix -i riboprof_out/counts/se_test_counts_table.tsv --method RPKM -g se_reference/transcripts_coding_truncated.gtf

Example 2: Perform batch normalization on RNA-seq data

Inputs

> batch = pd.read_csv('./riboprof_out/counts/batch_info.tsv', sep='\t', index_col=0)
> batch
 Sample Batch
0 s1 batch1
1 s2 batch2
2 s3 batch1
3 s4 batch2

Code

$ xpresspipe normalizeMatrix -i riboprof_out/counts/se_test_counts_table.tsv --batch riboprof_out/counts/batch_info.tsv

 Other Features

Other Features

Convert Counts Table Gene Names

Count tables are often produced with systematic names used to label each gene. The following sub-module will convert the column of systematic gene names to a common name using a reference GTF file

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe convertNames --help

	Required Arguments

	Description

	-i <path/filename>, --input <path/filename>

	Path and file name to sequence dataframe

	-g </path/transcripts.gtf>, --gtf </path/transcripts.gtf>

	Path and file name to GTF

	Optional Arguments

	Description

	--suppress_version_check

	Suppress version checks and other features that require internet access during processing

	--orig_name_label <label>

	Label of original name (usually “gene_id “)

	--orig_name_location <position>

	Position in last column of GTF where relevant data is found (i.e. 0 would be the first sub-string before the first comma, 3 would be the third sub-string after the second comma before the third comma)

	--new_name_label <label>

	Label of original name (usually “gene_id “)

	--new_name_location <position>

	Position in last column of GTF where relevant data is found (i.e. 0 would be the first sub-string before the first comma, 3 would be the third sub-string after the second comma before the third comma)

	--refill <label>

	In some cases, where common gene names are unavailable, the dataframe will fill the gene name with the improper field of the GTF. In this case, specify this improper string and these values will be replaced with the original name

Example 1: Convert gene names in count dataframe

$ xpresspipe convertNames -i riboprof_out/counts/se_test_counts_table.csv -g se_reference/transcripts.gtf

 FAQs

FAQs

If you have questions, requests, or bugs to report, please use the XPRESSpipe issues forum [https://github.com/XPRESSyourself/XPRESSpipe/issues].

A step of the pipeline is erroring for no apparent reason

First, please check the output in your terminal, along with in the log file. If the step that the pipeline breaks on does not output any useful information, check that the required dependencies were installed correctly. For example, when we were testing the the geneCoverage module on a supercomputing cluster, the pipeline responded saying it couldn’t find the appropriate index file. It turned out the R package, GenomicFeatures was not downloaded due to issues with the rtracklayers package. For this situation, we fixed it by uninstalling Anaconda and reinstalling the dependencies, as below:

Run each of these steps. If a command doesn't work, skip to the next one
$ conda install anaconda-clean
$ anaconda-clean --yes
$ rm -rf ~/miniconda
$ rm ~/.condarc
$ rm -r ~/.conda/

$ cd ~
$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash ~/Miniconda3-latest-Linux-x86_64.sh
$ conda env base --file XPRESSpipe/requirements.yml

During Anaconda installation, reply yes to all prompts. If you wish to install the XPRESSpipe dependencies to their own environment, replace base with your_environment_name_here in the last step. If XPRESSpipe continues to malfunction after completion of these steps, please reach out to us on the XPRESSpipe issues forum [https://github.com/XPRESSyourself/XPRESSpipe/issues].

The pipeline breaks because of a segmentation fault during alignment.

Occasionally, depending on allocation of CPUs, 32 virtual CPUs may be available, but only 16 are configured. This may lead to memory overloads by trying to use more than configured, as the large index files will be temporarily copied to each processing core. If this is the case, provide the max_processors with the number in the log file stated as available. For a computing node with 64 GB of RAM available, we generally see that 20 CPUs is stable. See log example below:

sh: line 1: 70311 Segmentation fault STAR --runThreadN 30 ...

or

WARNING: fastp uses up to 16 threads although you specified 32

 Updates

Updates

v0.6.3

Major

- New installation method: Instead of installing the software with the pip install . method, a new install script is provided that handles installation of some dependencies better. The new method now only requires the user to run bash install.sh. See the Installation page for an updated walkthrough on this update.

Minor

- Updated docs and examples

- Removed unused variable in args_dict

Previous versions

v0.6.2

- Added --suppress_version_check flag to enable use of XPRESSpipe without internet access

- Added --smoothen flag to any module that uses the geneCoverage sub-module. By default, a sliding window will not be used to smoothen the geneCoverage plots. If provided, a rolling window set at 20 will be used to smoothen the plots.

v0.6.1

- Add flag during curation steps to allow of UCSC/refseq GTFs during GTF modification steps (truncation, etc.)

Usage: Provide the --ucsc_format flag to the curateReference or modifyGTF sub-modules. These modifications in format only apply to XPRESSpipe GTF truncation features. Any formatting errors with the GTF file that pertain to alignment, counting, etc. dependencies will need to be addressed by the user.

- Fixed error in XPRESSpipe interface with XPRESSplot’s convert_names function where XPRESSpipe did not read in first column of table as index

v0.6.0

- Minor modification to instructions on how to install XPRESSpipe and use its conda environment on a supercomputing node.

- Removed version specifications for conda environment setup to ease install (fixes issues in a better way than the solution from v0.5.0)

- Moved required riboWaltz functions to XPRESSpipe as installation has been recurrently problematic

v0.5.0

- Fixed issue where genome size calculation would round up and miscalculate genome_size parameter for STAR.

- Added fastp_lite for removal of 3’ internal UMIs (generally takes ~1 min per RNA-seq sample with about 30 million reads)

- For example:

5’-read-spacer-UMI-adapter-3’

- Integrating this addition into options and trimming

- Updated MANIFEST file to reliably copy R and Julia scripts to executing folder for XPRESSpipe

- Updated command builder (xpresspipe build) to include recent additions

- Updated requirements to prevent issue where solved environment required to install R 3.5.1 or greater would create an error where samtools markdup would freeze

- Frequently, R 3.5.1 or greater would create library linking error to stringi, causing GenomicFeatures to not function. Added to RbuildIndex.r to reinstall stringi, which appears to clear up the issue.

v0.4.4

- Fixed issue with string catenation during UMI fastp call where UMI length was not properly forced to a string

v0.4.3

- Fixed issue with metagene where parallelization overloaded memory and resulted in OOM errors. Fixed by making memory thresholding slightly more strict.

v0.4.2

- Fixed convert_names xpressplot call

v0.4.1

- Introduced some restrictions to dependency versions. Some newer versions of dependencies were acting problematic. Will try to figure out how to allow for current versions of these dependencies to be used

- Fixed plotting issue with periodicity plots

v0.4.0

- Introduced rRNA depletion during alignment step (previously could only do so during the quantification step)

- Expanded periodicity analysis to cover more holistic P-site analysis (report codon usage stats). The submodule previously called periodicity is now called by p_sites

- Allow for setting upper limit threshold for read length during pre-processing reads and P-site analysis (previously only a lower limit was available)

- All documentation associated with this changes has been updated.

v0.3.1

- Fix BAM file threshold for metagene and geneCoverage to avoid OOM errors

- Turn off BAM file threshold for counting (low memory footprint, so can use all cores available)

- Import openssl library manually in Rperiodicity – occasionally had trouble finding the library on its own and would error

v0.3.0

- Transfers R dependency installs to Anaconda environment load

- Modified fastq and bam memory factor to optimize resources

- Rebuilt read distribution module with JuliaLang for super memory efficiency during parallelization

- Fixed issue where one| -exon genes would not display feature annotations in geneCoverage modules

- Made matplotlib backend calls flexible for HPC usage

- Made directory checks more thorough

- Fixed a potential off| -by| -one issue with GTF truncator

- Updated appropriate tests

- Updates to documentation

- Added code of conduct and contributions information

v0.2.4-beta

- Manuscript submission version

- Fixed issues with using polyX adaptors

- Allowed more multi-threading during post-processing of aligned reads to use resources more efficiently

- Added integrated pipeline tests for Travis CI build to assess pipeline integrity each push

- Updated install walkthrough video

 Index

Index

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/se_test_metagene_summary.png
14000

12000

10000

8000

6000

4000

2000

—— metacount

20

40 60
meta-transcript

80

100

35000

30000

25000

20000

15000

10000

5000

—— metacount

20

40 60
meta-transcript

80

100

_images/xpresspipe_overview.png
Parent
Directory

Reference

Files

Input
Files

Output
Directory

Trimmed
Files

Alignment
Files

Count
Files

Quiality
Files

Analysis
Files

_images/riboseq_overview.png
Ribosome rRNA Library
Footprint Isolation Depletion Preparation

S
DEL. e~y
“,(no I~

Cell Lysis

_images/se_test_fastqc_summary.png
trimmed_SRR2075925_ribo_ DMSO_rep1_small_fastqc/fastqc_data trimmed_SRR2075930_rna_DMSO_rep1_small_fastqc/fastqc_data

25000
—— read size (bp) —— read size (bp)
3000
20000
2500
2000 15000
1500
10000
1000
5000
500
0 0
20 25 30 35 40 45 50 40 42 44 46 48

position position

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 XPRESSpipe

 		
 Overview

 		
 Ribosome Profiling

 		
 5’ and 3’ ribosome footprint bias

 		
 rRNA contamination

 		
 Ribosome profiling protocol and overview

 		
 SE and PE RNA-seq

 		
 Software

 		
 fastp

 		
 STAR

 		
 Samtools, bedtools, deepTools

 		
 HTSeq

 		
 Cufflinks

 		
 dupRadar

 		
 riboWaltz

 		
 SVA

 		
 DESeq2

 		
 MultiQC

 		
 Methodology

 		
 Transcriptomic Reference Files

 		
 PCR De-Duplication

 		
 Meta-Analysis

 		
 Quickstart

 		
 Running XPRESSpipe

 		
 Video Walkthroughs

 		
 Beginner’s Guide

 		
 First Steps

 		
 Install XPRESSpipe

 		
 Generate Reference Files

 		
 Process Raw Sequencing Files

 		
 Sequencing Metrics

 		
 Library Complexity

 		
 Metagene Analysis

 		
 Periodicity (Ribosome Profiling)

 		
 Count Data and Downstream Analysis

 		
 Supercomputing

 		
 Install

 		
 Run Data

 		
 Explore the Data

 		
 Installation

 		
 Install XPRESSpipe

 		
 Install in a supercomputing environment

 		
 General Usage

 		
 File Naming

 		
 Data Output

 		
 Curating References

 		
 XPRESSpipe Reference Requirements

 		
 Get Sequence Files

 		
 Perform Full Reference Curation

 		
 Arguments

 		
 Example 1: Create XPRESSpipe-formatted reference for single-end alignment

 		
 Example 2: Create refFlat files

 		
 STAR Reference Curation

 		
 Arguments

 		
 Example 1: Create a single-end sequencing reference

 		
 Example 2: Create a paired-end sequencing reference

 		
 Example 3: Create a single-end sequencing reference for Saccharomyces cerevisiae

 		
 Reference Modification

 		
 Arguments

 		
 Example 1: Create longest transcript, protein coding-only, truncated reference

 		
 Single-End RNA-seq Pipeline

 		
 Arguments

 		
 Example 1: Run pipeline on single-end RNA-seq sample files

 		
 Paired-End RNA-seq Pipeline

 		
 Arguments

 		
 Example 1: Run pipeline on paired-end RNA-seq sample files

 		
 Ribosome Profiling Pipeline

 		
 Arguments

 		
 Example 1: Run pipeline on ribosome profiling sample files

 		
 Example 2: Run pipeline on ribosome profiling sample files with UMIs

 		
 Quality Control

 		
 Read Distribution Analysis

 		
 Arguments

 		
 Example 1: Analyze read distributions from ribosome profiling libraries

 		
 Metagene Analysis

 		
 Example 1: Analyze metagene profiles of sequence libraries

 		
 Intron-collapsed Gene Coverage Analysis

 		
 Example 1: Analyze gene coverage profile of sequence libraries

 		
 P-site Analysis

 		
 Example 1: Analyze P-sites from ribosome profiling libraries

 		
 Analysis

 		
 Differential Expression Analysis

 		
 Sample Factor Files

 		
 Arguments

 		
 Example 1: Analyze ribosome profiling data

 		
 Example 2: Analyze RNA-seq data

 		
 Example 3: Analyze RNA-seq data that was prepared in different batches

 		
 rRNA Probe

 		
 Example 1: Generate rank-ordered list of over-represented sequences

 		
 Read Pre-Processing

 		
 Read Trimming

 		
 Arguments

 		
 Example 1: Trim ribosome profiling sequence data using default preferences

 		
 Example 2: Predict adapter and trim ribosome profiling sequence data

 		
 Example 3: Trim adapter from ribosome profiling reads

 		
 Example 4: Predict adapter and trim paired-end sequence data

 		
 Example 5: Pass explicit adapter and trim paired-end sequence data

 		
 Example 6: Trim single-end sequence data of polyX adapters

 		
 Example 7: Trim adapter from ribosome profiling reads and process UMIs

 		
 Alignment

 		
 Arguments

 		
 Single-End RNAseq Alignment

 		
 Example 1: Single-end RNAseq alignment

 		
 Paired-End RNAseq Alignment

 		
 Example 1: Paired-end RNAseq alignment

 		
 Read Quantification

 		
 Quantifying and Collating Reads

 		
 Arguments

 		
 Example 1: Count ribosome profiling alignments

 		
 Example 2: Count paired-end alignments

 		
 Normalize

 		
 Sample Normalization

 		
 Assumptions

 		
 Normalization Methods

 		
 Batch Correction

 		
 Arguments

 		
 Example 1: Perform RPKM normalization on single-end RNA-seq data

 		
 Example 2: Perform batch normalization on RNA-seq data

 		
 Other Features

 		
 Convert Counts Table Gene Names

 		
 Arguments

 		
 Example 1: Convert gene names in count dataframe

 		
 FAQs

 		
 A step of the pipeline is erroring for no apparent reason

 		
 The pipeline breaks because of a segmentation fault during alignment.

 		
 Updates

 		
 v0.6.3

 		
 Previous versions

 		
 v0.6.2

 		
 v0.6.1

 		
 v0.6.0

 		
 v0.5.0

 		
 v0.4.4

 		
 v0.4.3

 		
 v0.4.2

 		
 v0.4.1

 		
 v0.4.0

 		
 v0.3.1

 		
 v0.3.0

 		
 v0.2.4-beta

_static/up.png

_images/geneCoverage_IGV_comparison.png
