
xpresspipe Documentation
Release 0.6.2

Jordan A. Berg

Jun 27, 2023

Contents

1 About 3

2 Table of contents 5
2.1 Overview . 5
2.2 Quickstart . 9
2.3 Beginner’s Guide . 10
2.4 Installation . 16
2.5 General Usage . 18
2.6 Curating References . 19
2.7 Single-End RNA-seq Pipeline . 25
2.8 Paired-End RNA-seq Pipeline . 27
2.9 Ribosome Profiling Pipeline . 29
2.10 Quality Control . 31
2.11 Analysis . 36
2.12 Read Pre-Processing . 42
2.13 Alignment . 45
2.14 Read Quantification . 47
2.15 Normalize . 49
2.16 Other Features . 51
2.17 FAQs . 52
2.18 Updates . 53

3 License 57

4 Questions? 59

i

ii

xpresspipe Documentation, Release 0.6.2

Contents 1

https://github.com/XPRESSyourself/XPRESSpipe/workflows/build/
https://xpresspipe.readthedocs.io/en/latest/?badge=latest

xpresspipe Documentation, Release 0.6.2

2 Contents

CHAPTER 1

About

XPRESSpipe is a part of the XPRESSyourself suite of sequencing tools. XPRESSpipe is an automated, efficient, and
flexible pipeline for end-to-end processing of ribosome profiling data. XPRESSpipe is currently capable of handling
single-end (SE), paired-end (PE), and ribosome profiling data. Other analyses can be performed by XPRESSplot.
Please read the relevant documentation for more information.

If you have limited or no computational experience, please see our Beginner’s Guide.

Please refer to the Overview page for more details regarding functionality.

3

https://github.com/XPRESSyourself/XPRESSpipe
https://github.com/XPRESSyourself/
https://github.com/XPRESSyourself/XPRESSpipe
https://github.com/XPRESSyourself/XPRESSpipe
https://github.com/XPRESSyourself/XPRESSplot

xpresspipe Documentation, Release 0.6.2

4 Chapter 1. About

CHAPTER 2

Table of contents

2.1 Overview

2.1.1 Ribosome Profiling

Ribosome profiling utilizes Next Generation Sequencing (NGS) to provide a detailed picture of the protein
translation landscape within cells. Cells are lysed, translating ribosomes are isolated, and the ribosome protected
mRNA fragments (ribosome footprints are integrated into a SE RNA-seq library. The library is then sequenced and
processed similarly to a single-end RNA-seq run, with some exceptions:

5’ and 3’ ribosome footprint bias

Footprint read pile-up at the 5’ and 3’ ends of transcripts is a well-documented phenomenon in ribosome profiling.
This results from the kinetically slower translation initiation and termination steps, thus leading to higher density of
ribosomes at these positions. Therefore, it is best to quantify reads by excluding the extremities of transcripts from
consideration. The convention is to remove the first 45 nt and last 15 nt of each transcripts coding space. By using the
xpresspipe modifyGTF or xpresspipe curateReference sub-modules with the flag -t provided, the
user can prepare the required files for appropriate footprint quantification.

rRNA contamination

Ribosome footprinting involves RNase digestion of a RNA. As these footprints are protected by the ribosome, they
evade digestion and can later be incorporated into a sequence library. However, this leads to much of the ribosomal
RNA being digested and fragments carrying through with the footprint samples. Commercial kits are often unable to
target many of these randomly fragmented rRNA species, and it is thus advised to create depletion probes for
dominant rRNA fragment species in ribosome profiling libraries for a given organism. By using the xpresspipe
rrnaProbe sub-module, one can determine what the dominant consensus rRNA species are and create depletion
probes to prevent their incorporation into future sequence libraries.

5

https://en.wikipedia.org/wiki/Ribosome_profiling

xpresspipe Documentation, Release 0.6.2

Ribosome profiling protocol and overview

See this paper for a recent discussion and detailed protocol of the technique.

2.1.2 SE and PE RNA-seq

The XPRESSpipe pipeline is flexibly designed to be able to process and perform preliminary analyses on single-end
(SE) or paired-end RNA-seq sequence read. Raw data is most often generated in the form of a .fastq or .txt file. This
data is useful in determining the gene expression landscape of a population of cells. Other qualities, such as
microRNA abundance, splice events, and sequence variants can also be detected and analyzed.

2.1.3 Software

XPRESSpipe aims to use the curate the most current and robust software packages required to process and analyze
ribosome profiling and bulk RNA-sequencing. In designing XPRESSpipe, we referred to a variety of benchmarking
studies to determine the best option for this pipeline. Below is a rationale for many of the packages chosen. As
software continues to improve and benchmarking studies are published, XPRESSpipe and its documentation will be
updated to reflect these improvements.

fastp

fastp source – Read pre-processing
While external benchmarking has not been performed to our knowledge in recent years on read pre-processing tools,
we chose to use fastp as it is fast, and (at least from self-reports) has reliable output. While most read pre-processing
software does not diverge significantly in quality, we also favored fastp as it is able to handle more recent trends in
RNA-Seq, such as trimming of unique molecular identifiers (UMIs).

STAR

STAR source – Masking and Alignment
A recent benchmarking paper showed that STAR outperformed other comparable tools in speed and performance,
increasing the number of correctly aligned reads, while reducing the number of falsely called reads as is the case with
several other packages.

Samtools, bedtools, deepTools

Samtools source, bedtools source, deepTools source – Alignment file post-processing

6 Chapter 2. Table of contents

https://www.ncbi.nlm.nih.gov/pubmed/28579404
http://support.illumina.com/content/dam/illumina-support/help/BaseSpaceHelp_v2/Content/Vault/Informatics/Sequencing_Analysis/BS/swSEQ_mBS_FASTQFiles.htm
https://github.com/OpenGene/fastp
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4933-1
https://github.com/alexdobin/STAR
https://www.nature.com/articles/nmeth.4106
https://github.com/samtools/samtools
https://github.com/arq5x/bedtools2
https://github.com/deeptools/deepTools

xpresspipe Documentation, Release 0.6.2

These tools handle the alignment file processing before quantification to identify PCR amplification artifacts
(optional), remove non-uniquely aligned reads, and so on.

HTSeq

HTSeq source – Read Quantification
HTSeq is used as it is a thoroughly vetting read counting package that has stood the test of time. Additionally, it is
employed in the TCGA pipeline, thus we included this option to conform to these specifications. In the case of
quantifying reads, HTSeq is very accurate and has the advantage of being able to quantify to specific gene features.
This is particularly useful in ribosome profiling as it allows you to quantify reads to the protein coding space (CDS)
of a transcript. Additionally, if one wanted to examine differences in uORF occupancy of ribosome footprints, they
could specify five_prime_utr or three_prime_utr for the --feature_type option.

Cufflinks

Cufflinks source – Read quantification (Isoform abundance)
A recent benchmarking paper showed evidence that Cufflinks using default parameters performed the best compared
to several other read quantification tools.
XPRESSpipe uses Cufflinks v2.1.1 as Cufflinks v2.2.1 appears to suffer from a persistent Seg Fault 11 error on
MacOS. No significant changes effecting quantification have occurred between these versions. v2.1.1 is downloaded
automatically for the user during installation of XPRESSpipe.

dupRadar

dupRadar source – Library Complexity
dupRadar is a stable, easy to use tool for estimating library size complexity and doesn’t suffer from systematic
software issues like other tools that contain similar functionality.

riboWaltz

riboWaltz source – P-site distribution/periodicity analysis
riboWaltz offers to date perhaps the most elegant and complete method for P-site calculation and offers a complete
suite of all P-site related utilities needed for ribosome profiling analysis.

SVA

SVA source – Known Library Batch Correction
Used for correcting for known batch effects between samples (i.e. samples prepared on different days, by different
people, etc.)

DESeq2

DESeq2 source – Differential Expression Analysis
Perform differential expression analysis on the data.

2.1. Overview 7

https://github.com/simon-anders/htseq
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
https://github.com/cole-trapnell-lab/cufflinks
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0734-x
https://bioconductor.org/packages/release/bioc/html/dupRadar.html
https://github.com/LabTranslationalArchitectomics/riboWaltz
http://bioconductor.org/packages/release/bioc/html/sva.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html

xpresspipe Documentation, Release 0.6.2

MultiQC

MultiQC source – Summary reports
MultiQC gathers log output from fastp, STAR, and HTSeq/Cufflinks to provide the user with a easy to view summary
of their processed data at each step. A pipeline run will also FastQC

2.1.4 Methodology

We seek to provide the best methodology for high-throughput sequencing processing, and explain key components
below.

Transcriptomic Reference Files

Read quantification often requires a transcriptome reference file in order to know what alignment coordinates map to
what genes. We introduce a suite of GTF modification tools included in XPRESSpipe that we will briefly discuss:

- Isoforms: GTF files contain records for every isoform of a gene. However, since these isoforms all contain
overlapping regions, many tools count a read mapping to one of these regions as a multi-mapper and either penalizes
it or discards it completely. A common way to handle this is by taking only the longest transcript for each gene
during quantification. This can be performed with xpresspipe modifyGTF -l.
- Protein Coding: When calculating mRNA expression levels, sample normalization to reduce technical bias from
RNA-seq platforms is important. However, highly-abundant rRNAs can confound these metrics. Therefore, we
provide an option to create a GTF file with only protein-coding annotated genes as input for quantification using
xpresspipe modifyGTF -p.
- Ribosome Profiling Bias: During translation, there are three steps: 1) Initiation, 2) Elongation, and 3) Termination.
There is usually a pause during Initiation and Termination, which will present itself as systematic spikes on the 5’ and
3’ ends of each transcript for ribosome profiling reads. A way to correct for the kinetics of initiation and termination
and measure translational capacity itself is to avoid mapping reads to the first 15 codons and last 5 codons of a
transcript. xpresspipe modifyGTF -t handles this by searching the exon space of each transcript and pruning
the given amounts off of each so that these regions are considered non-coding space. This process is performed
recursively, so that if you were trimming 45 nt from the 5’ end and exon 1 was only 30 nt, exon 1 would be removed
and exon 2 would be trimmed by 15 nt.

PCR De-Duplication

During sequence library creation, a PCR amplification step is common in order to produce enough sequence material,
but often, different reads are amplified differentially. When UMIs are not used, these duplication events can lead to
artificially higher expression of a transcript. We therefore include an optional PCR de-duplication step for
experiments not using UMIs. Be warned, this can introduce additional biases and should be used with caution.
Performing library complexity analysis on the samples should indicate whether or not computational de-duplication
should be performed. If UMIs were used, these can be specified and will be handled by the pipeline.

Meta-Analysis

Read distribution: Once reads are trimmed of low quality bases or adapter sequences, looking at the distribution of
read lengths can be helpful in identifying that the expected RNA was incorporated into the library. This is especially
useful in ribosome profiling datasets, where ideally all reads isolated and incorporated into the library should fall
within the 21-33 nt range.

8 Chapter 2. Table of contents

https://github.com/ewels/MultiQC
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.ncbi.nlm.nih.gov/pubmed/28579404
https://www.ncbi.nlm.nih.gov/pubmed/28579404
https://www.ncbi.nlm.nih.gov/pubmed/30001700

xpresspipe Documentation, Release 0.6.2

Metagene: Metagene analysis takes the read coverage across all transcripts in a sample and compiles their
distribution along a representative transcript. This is useful in identifying any systematic 5’ or 3’ biases in the library
preparation step.

P-Site Statistics: Helpful metrics of ribosome profiling libraries including looking at the characteristic 3 nt/1 codon
stepping of the translating ribosome and codon usage per sample.

Gene Coverage: Aspects of a transcript’s read coverage or occupancy can be of interest. However, other genome
browsers like IGV retain introns, and in the case of transcripts with massive introns, the actually coding space will be
difficult to analyze succinctly. XPRESSpipe will plot the gene coverage across an exon-only transcript
representation. However, it may still be worthwhile to explore intron coverage in some instances.

2.2 Quickstart

2.2.1 Running XPRESSpipe

Along with the video walkthroughs provided below, we recommend users start with the build module after
installation:

$ xpresspipe build

This will present the user with a series of questions to help design the command that should be executed in the
command line to curate a reference or to run the pipeline

2.2.2 Video Walkthroughs

The following is a short tutorial showing you how to install XPRESSpipe:

Note: The pip install . method has been replaced with a script that is executed by running bash install.
sh.

Reference building

Running XPRESSpipe on sequence data

If any of these are going too slow for you, check them out in the README

2.2. Quickstart 9

https://software.broadinstitute.org/software/igv/
https://github.com/XPRESSyourself/XPRESSpipe/blob/master/README.md

xpresspipe Documentation, Release 0.6.2

2.3 Beginner’s Guide

2.3.1 First Steps

If this is your first time doing any programming, congratulations! You are embarking upon a very rewarding path. As
with learning any new spoken language, there is a learning curve associated with learning a computer language.
While XPRESSpipe is aimed at reducing the majority, if not (hopefully) all of the overhead associated with
processing this data, using this software will still require some effort, just as would learning any new language or
laboratory technique.

XPRESSpipe is run through the command line interface (or CLI). This may seem daunting, but luckily, several free
online courses are available to quickly catch you up to speed on some of the basics that will be required to use this
software. We recommend Codecademy’s CLI course, which you can find here and should take only a couple of hours
(Codecademy estimates ~10 hours, but you probably don’t need to finish the course to be ready to use XPRESSpipe.
The purpose of this is to help you become more comfortable with the command line). We recommend watching the
walkthrough videos found on the quickstart page.

Once you’re ready to jump into the command line, we can get rolling! For the steps below, we’re going to assume we
are on an Mac operating system and provide examples under this pretext, but this software is compatible with any
Linux-like operating system and the syntax is largely the same (sorry Windows users! – but if you have a newer
version of Windows, you may be able to use a Linux-flavored environment).

2.3.2 Install XPRESSpipe

Please refer to the installation documentation or the walkthrough video below:

Note: The pip install . method has been replaced with a script that is executed by running bash install.
sh.

2.3.3 Generate Reference Files

Before we can process our raw RNA-seq data, we need to create a reference directory (or for a folder, in other terms).
In this example, we will be working with human-derived RNA-seq data, so let’s perform the following in the
command line:

$ cd ~/Desktop
$ mkdir reference_folder
$ mkdir reference_folder/fasta_files

1. The first command helped us navigate to the Desktop. The icon is a shortcut for the User directory, and every
directory needs to be separated by a /
2. The second command created a new folder in the Desktop directory called reference_folder
3. The third command created a new folder in the reference directory for intermediate reference files

10 Chapter 2. Table of contents

https://en.wikipedia.org/wiki/Command-line_interface
https://www.youtube.com/watch?v=kqUR3KtWbTk
https://www.codecademy.com/learn/learn-the-command-line

xpresspipe Documentation, Release 0.6.2

Now let’s get the reference files. We’re going to do this directly in the command line, but if you have trouble with
this, I will explain an alternative afterwards. Quick note, because the next lines of code are a bit long, I used the
:data:‘‘ character to indicate I am continuing the command in the next line. You not include these characters when
executing the command, they just help make the code more readable. We will first read the retrieval commands into a
file which will additionally act as a log file for the version for the genome version we are using.

You should modify the the variable calls between the # signs. For GTF_URL, you should change the URL currently
provided to the one appropriate for your organism of interest. Make sure you are downloading the GTF file and NOT
the GFF file. For FASTA_URL, you should do the same as before with the URL to the chromosome DNA FASTA
files, but you should only copy the URL up to “chromosome”, but not include the chromosome identifier. For
CHROMOSOMES, type out the chromosome identifiers you want to download between the ” characters with a space
between each.

Note: I do not personally recommend using the toplevel genome sequence files. Whenever I have used these, I
often run into a memory overload error during genome curation.

$ cd reference_folder/

Change specific organism file names based on your organism of interest
$ echo 'GTF_URL=ftp://ftp.ensembl.org/pub/release-97/gtf/homo_sapiens/Homo_sapiens.
→˓GRCh38.97.gtf.gz' >> fetch.sh
$ echo 'FASTA_URL=ftp://ftp.ensembl.org/pub/release-97/fasta/homo_sapiens/dna/Homo_
→˓sapiens.GRCh38.dna.chromosome' >> fetch.sh
$ echo 'CHROMOSOMES="1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y"' >>
→˓ fetch.sh

$ echo 'curl -O $GTF_URL' >> fetch.sh
$ echo 'gzip -d Homo_sapiens.GRCh38.97.gtf.gz' >> fetch.sh
$ echo 'mv Homo_sapiens.GRCh38.97.gtf transcripts.gtf' >> fetch.sh
$ echo 'cd fasta_files/' >> fetch.sh
$ echo 'for X in $CHROMOSOMES; ' >> fetch.sh
$ echo 'do curl -O ftp://ftp.ensembl.org/pub/release-97/fasta/homo_sapiens/dna/Homo_
→˓sapiens.GRCh38.dna.chromosome.${X}.fa.gz; done ' >> fetch.sh
$ echo 'gzip -d *.gz' >> fetch.sh
$ echo 'cd ../' >> fetch.sh
$ bash fetch.sh

Let’s discuss what we just did:

1. We navigated into the reference folder, downloaded a GTF reference file and unzipped it, then navigated to the
fasta_file directory to download the raw reference data and unzipped it. Finally, we returned to the main
reference directory.
2. If this didn’t work, we can navigate to Ensembl to download the relevant data. We need to get the GTF and DNA
chromosomal FASTA files for our organism of interest. The link to the chromosome sequence files actually contains
more files than we need. We just need the files that start with Homo_sapiens.GRCh38.dna.chromosome.
You can download them, move them to the appropriate directories within your reference directory, and unzip the files
by double-clicking on them.

Now we need to curate these references files into something the sequencing alignment software can use. Since we are
using ribosome profiling data, we want a reference that will allow us to avoid mapping to the 5’ and 3’ ends of genes.

2.3. Beginner’s Guide 11

https://www.ensembl.org/
https://www.cell.com/cms/10.1016/j.celrep.2016.01.043/attachment/257faf34-ff8f-4071-a642-bfdb531c75b8/mmc1

xpresspipe Documentation, Release 0.6.2

We also don’t want to align to anything but protein coding genes. Finally, we want to quantify to the longest
transcript (although this is not required except in certain cases for downstream analysis compatibility). This last bit
just helps the software avoid confusion when a gene has multiple splice variants to choose from. Since this is short
read sequencing (let’s say we were doing 50 bp single-end sequencing), we also want to factor this into the curation
of the reference (see the --sjdbOverhang argument below).

$ xpresspipe curateReference \
--output ./ \
--fasta fasta_files/ \
--gtf ./transcripts.gtf \
--protein_coding \
--truncate \
--sjdbOverhang 49

or

$ xpresspipe build

And then choose the curate option

- The truncation option is only necessary when using XPRESSpipe to process ribosome profiling samples and their
associated RNA-seq samples.
- If interested in quantifying miRNA, etc, leave out the --protein_coding argument.
- If running sequencing where the read (single-end) or mates not equal to 100 bp, you will want to change the
--sjdbOverhang argument to be the length of one of the paired-end reads - 1, so if we ran 2x100bp sequencing,
we would specify --sjdbOverhang 99 (although in this case, the default of --sjdbOverhang 100 is just
fine). If you changed this number, remember this for the next steps as you will need to provide it again if changed
here.
- This may take awhile, and as we will discuss later, you may want to run these steps on a supercomputer, but this will
serve as a preliminary guide for now.
- One final consideration – if we are dealing with an organism with a smaller genome size, we will want to provide
the --genome_size parameter with the the number of nucleotides in the organism’s genome. If you change this
parameter in this step, you will need to provide the parameter and value in the align, riboseq, seRNAseq, and
seRNAseq modules.

2.3.4 Process Raw Sequencing Files

Now let’s get our raw data::
1. Make a new folder, something called raw_data or whatever you like and place your data there.
2. Make sure the files follow proper naming conventions (see naming conventions at General Usage)
3. Now let’s process the data
4. Let’s also create a folder called something like output
5. Also, make sure you have the 3’ adapter sequence handy used when generating your sequencing library
6. We’ll feed the program the new GTF file that contains only longest transcript, protein coding, truncated references
generating in the reference curation step
7. We’ll give the experiment a name and also specify what method of sample normalization we want performed on
the count data
8. We also need to specify the --sjdbOverhang amount we fed into the reference curation step, so in this case we
will use --sjdbOverhang 49

12 Chapter 2. Table of contents

https://www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/

xpresspipe Documentation, Release 0.6.2

$ xpresspipe riboseq --input raw_data/ \
--output output/ \
--reference reference_folder/ \
--gtf reference_folder/transcripts_LCT.gtf
--experiment riboseq_test
--adapter CTGTAGGCACCATCAAT
--method RPKM
--sjdbOverhang 49

or

$ xpresspipe build

And then choose the appropriate pipeline to build

If you are running a lot of files, especially for human samples, this may take a lot of time. We recommend running
this on some kind of server. A situation like yeast with few samples may be feasible to run on a personal computer,
but will likely also take some time.

Sequencing Metrics

In your output folder, you will see a file named riboseq_test_multiqc_report.html. This file will
compile the statistics from each processing step of the pipeline for each sample file you provided as input. Things
like read quality, mapping, and quantification statistics can be found here. Just double-click the file or execute the
following command to open in your default browser window.

$ open riboseq_test_multiqc_report.html

Library Complexity

Within the complexity directory in your output folder, you will find summary PDFs for all samples processed
analyzing library complexity of each sample.

Metagene Analysis

Within the metagene directory in your output folder, you will find summary PDFs for all samples processed
analyzing the metagene profile of each sample.

Periodicity (Ribosome Profiling)

Within the periodicity directory in your output folder, you will find summary PDFs for all samples processed
analyzing ribosome periodicity of each of each sample containing reads 28-30nt.

Count Data and Downstream Analysis

Within the counts directory in your output folder, you will find individual counts tables for each sample, as well as
compiled tables for each sample that was processed.

2.3. Beginner’s Guide 13

xpresspipe Documentation, Release 0.6.2

2.3.5 Supercomputing

Install

Much of the same commands will be performed as above, aside from a couple key modifications.
1. Navigate to your user home directory on the supercomputer:

$ cd ~

2. Install Anaconda if not already done and follow the prompts given when running the bash script. We recommend
letting the installer set up the required PATHS needed for interfacing with Anaconda:

$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash Miniconda3-latest-Linux-x86_64.sh

3. Install the XPRESSpipe package. The following will download the current development version of XPRESSpipe.
When installing a specific version of XPRESSpipe, do so as you would from the above instructions. You may need to
modify the directory name for the XPRESSpipe files if you do so.

$ git clone https://github.com/XPRESSyourself/XPRESSpipe.git
$ conda env create -f ./XPRESSpipe/requirements.yml
$ conda activate xpresspipe
$ pip install ./XPRESSpipe

4. Let’s test this to make sure everything is operating properly:

$ cd ~
$ xpresspipe test

Run Data

1. Assuming you installed the XPRESSpipe dependencies in a conda environment called xpresspipe, you will
use the following as a template. If you named the conda environment something else, you would replace the line
conda activate xpresspipe with conda activate env_name. If dependencies were installed to the
base environment, the source $(conda... and conda activate ... lines are unnecessary.
2. The commands here are the same as above, but likely the method of execution will be different. A lot of
supercomputing clusters manage job submission through a system called SLURM. Each supercomputing cluster
should have individualized and tailored instructions for proper usage. We will briefly provide an example of how one
would submit a job to a SLURM batch system:

14 Chapter 2. Table of contents

https://www.youtube.com/watch?v=RpkAyFI05yY

xpresspipe Documentation, Release 0.6.2

#!/bin/bash
#SBATCH --time=72:00:00
#SBATCH --nodes=1
#SBATCH -o /scratch/general/lustre/$USER/slurmjob-%j
#SBATCH --partition=this_cluster_has_no_name

source $(conda info --base)/etc/profile.d/conda.sh
source activate xpresspipe

#set up the temporary directory
SCRDIR=/scratch/general/lustre/$USER/$SLURM_JOBID
mkdir -p $SCRDIR

Provide location of raw data and parent reference directory
SRA=/scratch/general/lustre/$USER/files/your_favorite_experiment_goes_here
REF=/scratch/general/lustre/$USER/references/fantastic_creature_reference

Send raw data to your Scratch directory
mkdir $SCRDIR/input
cp $SRA/*.fastq $SCRDIR/input/.

Make an output directory
mkdir $SCRDIR/output
cd $SCRDIR/.

xpresspipe riboseq -i $SCRDIR/input -o $SCRDIR/output/ -r $REF --gtf $REF/transcripts_
→˓CT.gtf -e this_is_a_test -a CTGTAGGCACCATCAAT --sjdbOverhang

3. To queue this script into the job pool, you would do the following:

$ sbatch my_batch_script.sh

4. To monitor the progress of your job, execute the following:

$ watch -n1 squeue -u $USER

After the job is finished, you can export the data as shown in the next section.

Explore the Data

Once the data is finished processing, we can start exploring the output. Explanations each quality control analysis can
be found in the Analysis section of the documentation.

In order to get the data from a HPC to your personal computer, you can use a command like the following:

2.3. Beginner’s Guide 15

xpresspipe Documentation, Release 0.6.2

$ cd ~/Desktop # Or any other location where you want to store and analyze the data
$ scp USERNAME@myCluster.chpc.university.edu:/full/path/to/files/file_name.suffix ./

2.4 Installation

2.4.1 Install XPRESSpipe

1. Open your command line interface and install conda, if not already installed.

If on a MacOS
$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

If on a LinuxOS
$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash ~/Miniconda3-latest-MacOSX-x86_64.sh

Enter yes for all successive prompts and allow the script to install Conda into
→˓your path
After installation, the install script can be removed
rm ~/Miniconda3-latest-MacOSX-x86_64.sh

2. Download the latest version of XPRESSpipe by executing the lines of code in the code block below. Replace the
URL for the version of XPRESSpipe for whatever version you want (these can be found under the releases tab on
the XPRESSpipe GitHub repository).

$ cd ~
$ curl -L -O https://github.com/XPRESSyourself/XPRESSpipe/archive/refs/tags/v0.6.3.zip
$ unzip XPRESSpipe-v0.6.3.zip
$ cd XPRESSpipe-v0.6.3/

3. Install XPRESSpipe dependencies via Conda and activate the XPRESSpipe environment:

Note: 20 Oct 2021 - Currently, base conda is having issues resolving the dependencies required for XPRESSpipe.
We recommend installing dependencies using mamba instead, which appears to resolve dependencies without issues.
mamba is also conveniently faster than base conda.

Installing dependencies using base conda:

$ conda env create -f requirements.yml
$ conda activate xpresspipe

16 Chapter 2. Table of contents

https://docs.conda.io/projects/conda/en/latest/user-guide/install/
https://github.com/XPRESSyourself/XPRESSpipe/releases

xpresspipe Documentation, Release 0.6.2

Installing dependencies using mamba:

$ conda install -c conda-forge mamba
$ mamba env create -f requirements.yml
$ conda activate xpresspipe

4. This installation method will create a separate environment for XPRESSpipe and all its dependencies to live in.
Each time you open the command line, you will need to type conda activate xpresspipe to use
XPRESSpipe
5. Install XPRESSpipe and test that the installation was successful:

Note: v0.6.3 and later employs the bash install.sh method for installing XPRESSpipe. If using v0.6.2
or earlier, you should instead run pip install .

$ bash install.sh
$ xpresspipe test

If a summary menu appeared in the command line interface, it means we are good to go! Congrats! You are almost
ready to use XPRESSpipe!

You can run xpresspipe --help to see a list of the available modules within XPRESSpipe. To see specific
parameters for a module, type xpresspipe <module_name> --help.

2.4.2 Install in a supercomputing environment

If the dependencies for XPRESSpipe were installed to a conda environment as above, you will need to add a couple
lines to you bash script to submit the supercomputing job.
For example, if using a SLURM job scheduler, you should include the following after the #SBATCH lines and before
any calls to XPRESSpipe in the slurm script, as below:

#!/bin/bash
#SBATCH --time=72:00:00
#SBATCH --nodes=1
#SBATCH ...
...

source $(conda info --base)/etc/profile.d/conda.sh
source activate xpresspipe

... rest of the script

2.4. Installation 17

https://github.com/mamba-org/mamba

xpresspipe Documentation, Release 0.6.2

2.5 General Usage

XPRESSpipe can be run essentially from beginning to end as a pipeline, or as individual sub-modules. We will
describe each option in more detail in each section of the documentation. The purpose of XPRESSpipe is to automate
the alignment, quality control, and initial analysis of single-end (SE), paired-end (PE), and ribosome profiling data. It
is intended that input data is in its own directory and that each file is a properly formatted fastq file. However, the
suffix for these files can be fq or txt as well. They can be zipped (zip or gz) or unzipped. When using
intermediate sub-modules, such as align or readDistribution, input will vary and is explicated

in the --help menu for each sub-module.

Further analysis on the resulting datasets can be performed using XPRESSplot.

2.5.1 File Naming

In order for many of the XPRESSpipe functions to perform properly and for the output to be reliable after alignment
(except for generation of a raw counts table), file naming conventions must be followed.

1. Download your raw sequence data and place in a folder – this folder should contain all the sequence data and
nothing else.
2. If you are working with single-end data, the files must be a FASTQ-formatted file and end with the suffix fastq,
fastq.gz, fq, fq.gz, txt, txt.gz. We recommend the fastq or fastq.gz suffix.
3. If you are working with paired-end data, the rules from Step 2 apply, but must the suffix must be prefaced by the
paired read group number as below:

ExperimentName_Rep1_a_WT.r1.fastq.gz
ExperimentName_Rep1_a_WT.r2.fastq.gz
ExperimentName_Rep2_a_WT.r1.fastq.gz
ExperimentName_Rep2_a_WT.r2.fastq.gz

or

ExperimentName_Rep1_a_WT.read1.fastq.gz
ExperimentName_Rep1_a_WT.read2.fastq.gz
ExperimentName_Rep2_a_WT.read1.fastq.gz
ExperimentName_Rep2_a_WT.read2.fastq.gz

2.5.2 Data Output

Running seRNAseq, peRNAseq, or riboseq will output all intermediate and final data files as shown in this
schematic:

18 Chapter 2. Table of contents

https://github.com/XPRESSyourself/XPRESSplot

xpresspipe Documentation, Release 0.6.2

2.6 Curating References

In order to quantify transcription levels from RNA-Seq data, reads must be mapped to a reference genome or
transcriptome. While there are multiple alignment software packages available, XPRESSpipe performs this step
using a current version of STAR for several reasons:

- Splice Junction Aware: STAR is capable of mapping reads spanning a splice junction, where more traditional
packages, such as Bowtie, are incapable of doing so and are better suited for tasks such as genome alignment.
- Performance: While computationally greedy (a human genome alignment requires upwards of 30 Gb RAM), the
performance and accuracy is excellent compared to the majority of other splice-aware aligners currently available
- Standard: The foundation of the pipeline used in XPRESSpipe is based in the TCGA standards for RNA-Seq
alignment. This method utilizes a guided or 2-pass alignment program. In the guided alignment, a GTF with
annotated splice junctions is used to guide the alignments over splice juntions. In the 2-pass alignment, reads are
mapped across the genome to identify novel splice junctions. These new annotations are then incorporated into the
reference index and reads are re-aligned with this new reference. While more time-intensive, this step can aid in
aligning across these junctions, especially in organisms where the transcriptome is not as well annotated. If mapping
to a well-documented organism, this step can be forgone and STAR will use the GTF annotations to determine
intronic regions of transcripts for read mapping.

2.6.1 XPRESSpipe Reference Requirements

An XPRESSpipe compatible reference directory must meet some requirements:

2.6. Curating References 19

https://github.com/alexdobin/STAR
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792058/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/

xpresspipe Documentation, Release 0.6.2

- All chromosomal genome fasta files are in their own directory within the parent reference directory. If a FASTA file
with all chromosomes combined is available for your organism, this can be provided, but must be in its own directory.
- A sub-directory, named genome, contains the STAR reference files. If createReference is used to curate the
reference, and the parent reference directory was provided as output location, this directory creation and file
formatting will be handled automatically by XPRESSpipe.
- A transcript reference (GTF), is located in the reference parent directory and is named transcripts.gtf. If a
coding-only or truncated reference GTFs are desired for read quantification, these should also be in this directory
(truncate will handle file naming and formatting so long as the output location is specified as this parent
directory). This file will then need to be specified within an XPRESSpipe pipeline.

Note: A completed reference directory can be created that follows these requirements by creating a directory, placing
the transcripts.gtf and genomic chromosome fasta files in the parent directory and running curateReference as
described below**

2.6.2 Get Sequence Files

The following is an example of how to get the reference files needed for generating a human reference:

$ mkdir human_reference
$ mkdir human_reference/genome_fasta
$ cd human_reference/
$ curl ftp://ftp.ensembl.org/pub/release-95/gtf/homo_sapiens/Homo_sapiens.GRCh38.95.
→˓gtf.gz -o transcripts.gtf.gz
$ for i in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y; do curl -O
→˓ftp://ftp.ensembl.org/pub/release-95/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.
→˓chromosome.${i}.fa.gz; done
$ gzip -d *.gz
$ mv *fasta genome_fasta

The chromosome IDs may vary depending on your organism.

Note: We recommend against using the toplevel Ensembl files. In our experience, this leads to RAM issues in
STAR.

2.6.3 Perform Full Reference Curation

The following will create a XPRESSpipe-formatted reference directory containing all STAR reference files and
transcript references needs for quantification and meta-analysis.
A parent reference directory containing the transcripts.gtf file and all chromosomal genome fasta files must be
present.

More details as to what each specific parameter is doing can be found in the sections below.*

20 Chapter 2. Table of contents

xpresspipe Documentation, Release 0.6.2

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe curateReference --help

Required Arguments Description
-o <path>, --output <path> Path to output directory
-f <path>, --fasta <path> Path to genome fasta files (file names should end in .fa, .fasta, or

.txt and no other files should exist in the directory with similar
extensions)

-g </path/transcripts.gtf>,
--gtf </path/transcripts.gtf>

Path and file name to transcript reference file names ‘tran-
scripts.gtf’

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
-l, --longest_transcript Provide argument to keep only longest transcript per gene record

(RECOMMENDED)
-p, --protein_coding Provide argument to keep only gene records annotated as protein

coding genes
-t, --truncate Provide argument to truncate gene records
--truncate_5prime Amount to truncate from 5’ end of each transcript, requires –trun-

cate argument (default: 45)
--truncate_3prime Amount to truncate from 3’ end of each transcript, requires –trun-

cate argument (default: 15)
--sjdbOverhang <value> Specify length of genomic sequences for constructing splice-aware

reference. Ideal length is read length - 1, so for 2x100bp
paired-end reads, you would use 100 - 1 = 99. However, the default
value of 100 should work in most cases

--genome_size <int> If mapping to an organism with a small genome, provide the length
in nucleotides. If you are not sure your organism has a small
genome, provide the number of bases and XPRESSpipe will de-
cide if this parameter needs to be changed during runtime

--ucsc_format Input GTF is UCSC/refseq formatted. This flag only pertains to
GTF modification, such as end truncation, not to STAR curation
processes. Errors related to STAR GTF formatting need to be sep-
arately addressed.

-m Number of max processors to use for tasks (default: No limit)

Example 1: Create XPRESSpipe-formatted reference for single-end alignment

- Creates a star reference for single-end read mapping (1x50bp reads)
- Keeps the longest transcript for each gene record
- Keeps only protein_coding annotated transcripts
- Truncates the first 45 nucleotides from the first exon of every transcript (default)
- Truncates the last 15 nucleotides from the last exon of every transcript (default)

2.6. Curating References 21

xpresspipe Documentation, Release 0.6.2

$ xpresspipe curateReference -o /path/to/se/ref/ -f /path/to/se/ref/ -g /path/to/se/
→˓ref/transcripts.gtf --longest_transcript --protein_coding --truncate --sjdbOverhang
→˓49

Example 2: Create refFlat files

- Creates a star reference for paired-end read mapping (2x100bp reads)
- No modifications are made to the GTF file
- Processes are limited to 10 cores

$ xpresspipe curateReference -o /path/to/pe/ref/ -f /path/to/pe/ref/ -g /path/to/pe/
→˓ref/transcripts.gtf -m 10

2.6.4 STAR Reference Curation

The following creates a STAR reference compatible with XPRESSpipe. These files are output in a directory created
during curation called genome in the specified --output directory.

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe makeReference --help

Required Arguments Description
-o <path>, --output <path> Path to output directory
-f <path>, --fasta <path> Path to genome fasta files (file names should end in .fa, .fasta, or

.txt and no other files should exist in the directory with similar
extensions)

-g </path/transcripts.gtf>,
--gtf </path/transcripts.gtf>

Path and file name to transcript reference file names ‘transcripts.gtf
(DO NOT USE MODIFIED GTF HERE)’

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
--sjdbOverhang <int> Specify length of genomic sequences for constructing splice-aware

reference. Ideal length is read length - 1, so for 2x100bp
paired-end reads, you would use 100 - 1 = 99. However, the default
value of 100 should work in most cases

--genome_size <int> If mapping to an organism with a small genome, provide the length
in nucleotides. If you are not sure your organism has a small
genome, provide the number of bases and XPRESSpipe will de-
cide if this parameter needs to be changed during runtime

-m Number of max processors to use for tasks (default: No limit)

22 Chapter 2. Table of contents

xpresspipe Documentation, Release 0.6.2

Example 1: Create a single-end sequencing reference

- Paths to output and location of genome fasta files for each chromosome are provided, as well as path and file name
to transcripts.gtf file
- Default number of threads are used for preparing reference

$ xpresspipe makeReference -o /path/to/reference/ -f /path/to/reference/ -g /path/to/
→˓reference/transcripts.gtf --sjdbOverhang 49

Example 2: Create a paired-end sequencing reference

- 12 threads are specified for reference creation
- The as 2x100bp paired-end sequencing was used, the default value for --sjdbOverhang of 100 is appropriate
in this case

$ xpresspipe makeReference -o /path/to/reference/ -f /path/to/reference/ -g /path/to/
→˓reference/transcripts.gtf -t 12

Example 3: Create a single-end sequencing reference for Saccharomyces cerevisiae

- Paths to output and location of genome fasta files for each chromosome are provided, as well as path and file name
to transcripts.gtf file
- Default number of threads are used for preparing reference
- Genome size is specified

$ xpresspipe makeReference -o /path/to/reference/ -f /path/to/reference/ -g /path/to/
→˓reference/transcripts.gtf --sjdbOverhang 49 --genome_size 3000000

2.6.5 Reference Modification

At times, quantification of transcripts or CDSs to a modified reference is desirable. Below are some examples:

1. As ribosomal RNA (rRNA) contamination is common in RNA-seq, even when a depletion step was performed
prior to library preparation, it is sometimes desirable to not count these and other non-coding RNAs in the
quantification and analysis.
2. During ribosome profiling library preparation, where a 5’ and 3’ pile-up of ribosome footprints due to slow
initiation and termination kinetics of footprints is common, it is suggested to exclude the first 45-50 nucleotides from
the 5’ end and 15 nucleotides from the 3’ end of each CDS during quantification. This command will automatically
curate an Ensembl GTF to meet these demands for read quantification. If a UCSC-formatted GTF is desired, users
should supply the --ucsc-format flag; however, the --longest_transcript flag will not work with a
UCSC-formatted GTF as longest transcript definitions are dependent on Ensembl annotations.
3. Several genes encode multiple isoforms or transcripts. During quantification, many software packages for counting
reads to genes consider a read mapping to multiple transcripts of the same gene as a multi-mapper. Unless interested
in alternate isoform usage, it is recommended that transcriptome reference files only contain the longest transcript for
each gene.

2.6. Curating References 23

https://www.cell.com/cms/10.1016/j.celrep.2016.01.043/attachment/257faf34-ff8f-4071-a642-bfdb531c75b8/mmc1
https://www.cell.com/cms/10.1016/j.celrep.2016.01.043/attachment/257faf34-ff8f-4071-a642-bfdb531c75b8/mmc1

xpresspipe Documentation, Release 0.6.2

The modifyGTF sub-module provides the ability to make the above-mentioned modifications to a GTF reference
file. The modified GTF file is output at the end and the filename is labeled with the modifications made. Truncations
to each transcript or CDS reference are strand-aware.

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe modifyGTF --help

Required Arguments Description
-g </path/transcripts.gtf>,
--gtf </path/transcripts.gtf>

Path and file name to reference GTF

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
-l, --longest_transcript Provide argument to keep only longest transcript per gene record

(not necessary except in cases where the Ensembl canonical tran-
script is desired)

-p, --protein_coding Provide argument to keep only gene records annotated as protein
coding genes

-t, --truncate Provide argument to truncate the CDSs of gene records
--truncate_5prime Amount to truncate from 5’ end of each CDS, requires –truncate

argument (default: 45)
--truncate_3prime Amount to truncate from 3’ end of each CDS, requires –truncate

argument (default: 15)
--ucsc_format Input GTF is UCSC/refseq formatted. This flag only pertains to

GTF modification, such as end truncation, not to STAR curation
processes. Errors related to STAR GTF formatting need to be sep-
arately addressed.

-m Number of max processors to use for tasks (default: No limit)

Example 1: Create longest transcript, protein coding-only, truncated reference

- Keeps the longest transcript for each gene record
- Keeps only protein_coding annotated transcripts
- Truncates the first 45 nucleotides from the first exon of every CDS (default)
- Truncates the last 15 nucleotides from the last exon of every CDS (default)
- Each modification desired must be implicitly passed to the sub-module

$ xpresspipe modifyGTF -g /path/to/reference/transcripts.gtf --longest_transcript --
→˓protein_coding --truncate

24 Chapter 2. Table of contents

xpresspipe Documentation, Release 0.6.2

2.7 Single-End RNA-seq Pipeline

The following pipeline will pre-process, align, and quality check single-end RNA-seq samples using the sub-modules
discussed in earlier chapters. For more detailed information concerning these steps, please refer to the Align chapter.

2.7.1 Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe seRNAseq --help

Required Arguments Description
-i <path>, --input <path> Path to input directory – if paired-end, file names should be exactly

the same except for r1/r2.fastq or similar suffix
-o <path>, --output <path> Path to output directory
-r <path>, --reference <path> Path to parent organism reference directory
-g </path/transcripts.gtf>,
--gtf </path/transcripts.gtf>

Path and file name to GTF used for alignment quantification (only
used for HTSeq quantification)

-e, --experiment Experiment name

2.7. Single-End RNA-seq Pipeline 25

xpresspipe Documentation, Release 0.6.2

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
--two-pass Use a two-pass STAR alignment for novel splice junction discov-

ery
-a <adapter1 ...> [<adapter1
...> ...], --adapter <adapter1
...> [<adapter1 ...> ...]

Specify adapter(s) in list of strings – for single-end, only provide
one adapter – if None are provided, software will attempt to auto-
detect adapters – if “POLYX” is provided as a single string in the
list, polyX adapters will be trimmed. If you want to auto-detect
adapters in for paired-end reads, provide None twice

-q <PHRED_value>, --quality
<PHRED_value>

PHRED read quality threshold (default: 28)

--min_length <length_value> Minimum read length threshold to keep for reads (default: 17)
--max_length <length_value> Maximum read length threshold to keep for reads (default: 0).

Setting this argument to 0 will result in no upper length limit.
--remove_rrna Provide flag to remove rRNA records from alignment files (BAM

files)
--front_trim <length> Number of base pairs to trim from the 5’ ends of reads (not avail-

able for polyX trimming) (default: 1)
--umi_location <location> Provide parameter to process UMIs – provide location (if working

with internal UMIs that need to be processed after adapter trim-
ming, provide “3prime”; else see fastp documentation for more
details, generally for single-end sequencing, you would provide
‘read1’ here; does not work with -a polyX option)

--umi_length <length> Provide parameter to process UMIs – provide UMI length (must
provide the –umi_location argument); does not work with -a polyX
option)

--spacer_length <length> Provide UMI spacer length, if exists. (default: 0)
--no_multimappers> Include flag to remove multimapping reads to be output and used

in downstream analyses
--deduplicate Include flag to quantify reads with de-duplication (will search for

files with suffix _dedupRemoved.bam)
--output_bed Include flag to output BED files for each aligned file
-c, --quantification_method Specify quantification method (default: htseq; other option: cuf-

flinks. If using Cufflinks, no downstream sample normalization is
required)

--feature_type <feature> Specify feature type (3rd column in GTF file) to be used if quanti-
fying with htseq (default: CDS)

--stranded <fr-unstranded/
fr-firststrand /
fr-secondstrand||no/yes>

Specify whether library preparation was stranded (Options before
|| correspond with Cufflinks inputs, options after correspond with
htseq inputs)

--method <RPM, RPKM, FPKM,
TPM>

Normalization method to perform (options: “RPM”, “TPM”,
“RPKM”, “FPKM”) – if using either TPM, RPKM, or FPKM, a
GTF reference file must be included

--vcf </path/to/file.vcf> Provide full path and file name to VCF file if you would like detect
personal variants overlapping alignments

--batch </path/filename.tsv> Include path and filename of dataframe with batch normalization
parameters

--sjdbOverhang
<sjdbOverhang_amount>

Specify length of genomic sequences for constructing splice-aware
reference. Ideal length is read length - 1, so for 2x100bp
paired-end reads, you would use 100 - 1 = 99. However, the default
value of 100 should work in most cases

--mismatchRatio
<mismatchRatio>

Alignment ratio of mismatches to mapped length is less than this
value. See STAR documentation for more information on setting
this parameter

--seedSearchStartLmax
<seedSearchStartLmax>

Adjusting this parameter by providing a lower number will im-
prove mapping sensitivity (recommended value = 15 for reads ~
25 nts). See STAR documentation for more information on setting
this parameter

genome_size Only needs to be changed if this argument was provided curing
reference building AND using a two-pass alignment. This should
be the length of the organism’s genome in nucleotides

-m Number of max processors to use for tasks (default: No limit)

26 Chapter 2. Table of contents

xpresspipe Documentation, Release 0.6.2

2.7.2 Example 1: Run pipeline on single-end RNA-seq sample files

$ xpresspipe seRNAseq \
-i se_test \
-o se_out \
-r se_reference \
--gtf transcripts_LC.gtf \
-e se_test \
-a CTGTAGGCACCATCAAT \
--method TPM \
--sjdbOverhang 49

2.8 Paired-End RNA-seq Pipeline

The following pipeline will pre-process, align, and quality check paired-end RNA-seq samples using the sub-modules
discussed in earlier chapters. For more detailed information concerning these steps, please refer to the Align chapter.

2.8.1 Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe peRNAseq --help

Required Arguments Description
-i <path>, --input <path> Path to input directory – if paired-end, file names should be exactly

the same except for r1/r2.fastq or similar suffix
-o <path>, --output <path> Path to output directory
-r <path>, --reference <path> Path to parent organism reference directory
-g </path/transcripts.gtf>,
--gtf </path/transcripts.gtf>

Path and file name to GTF used for alignment quantification (only
used for HTSeq quantification)

-e, --experiment Experiment name

2.8. Paired-End RNA-seq Pipeline 27

xpresspipe Documentation, Release 0.6.2

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
--two-pass Use a two-pass STAR alignment for novel splice junction discov-

ery
-a <adapter1 ...> [<adapter1
...> ...], --adapter <adapter1
...> [<adapter1 ...> ...]

Specify adapter(s) in list of strings – for single-end, only provide
one adapter – if None are provided, software will attempt to auto-
detect adapters – if “POLYX” is provided as a single string in the
list, polyX adapters will be trimmed. If you want to auto-detect
adapters in for paired-end reads, provide None twice

-q <PHRED_value>, --quality
<PHRED_value>

PHRED read quality threshold (default: 28)

--min_length <length_value> Minimum read length threshold to keep for reads (default: 17)
--max_length <length_value> Maximum read length threshold to keep for reads (default: 0).

Setting this argument to 0 will result in no upper length limit.
--remove_rrna Provide flag to remove rRNA records from alignment files (BAM

files)
--front_trim <length> Number of base pairs to trim from the 5’ ends of reads (not avail-

able for polyX trimming) (default: 1)
--umi_location <location> Provide parameter to process UMIs – provide location (see fastp

documentation for more details, generally for single-end sequenc-
ing, you would provide ‘read1’ here; does not work with -a polyX
option)

--umi_length <length> Provide parameter to process UMIs – provide UMI length (must
provide the –umi_location argument); does not work with -a polyX
option)

--spacer_length <length> Provide UMI spacer length, if exists. (default: 0)
--no_multimappers> Include flag to remove multimapping reads to be output and used

in downstream analyses
--deduplicate Include flag to quantify reads with de-duplication (will search for

files with suffix _dedupRemoved.bam)
--output_bed Include flag to output BED files for each aligned file
-c, --quantification_method Specify quantification method (default: htseq; other option: cuf-

flinks. If using Cufflinks, no downstream sample normalization is
required)

--feature_type <feature> Specify feature type (3rd column in GTF file) to be used if quanti-
fying with htseq (default: CDS)

--stranded <fr-unstranded/
fr-firststrand /
fr-secondstrand||no/yes>

Specify whether library preparation was stranded (Options before
|| correspond with Cufflinks inputs, options after correspond with
htseq inputs)

--method <RPM, RPKM, FPKM,
TPM>

Normalization method to perform (options: “RPM”, “TPM”,
“RPKM”, “FPKM”) – if using either TPM, RPKM, or FPKM, a
GTF reference file must be included

--vcf </path/to/file.vcf> Provide full path and file name to VCF file if you would like detect
personal variants overlapping alignments

--batch </path/filename.tsv> Include path and filename of dataframe with batch normalization
parameters

--sjdbOverhang
<sjdbOverhang_amount>

Specify length of genomic sequences for constructing splice-aware
reference. Ideal length is read length - 1, so for 2x100bp
paired-end reads, you would use 100 - 1 = 99. However, the default
value of 100 should work in most cases

--mismatchRatio
<mismatchRatio>

Alignment ratio of mismatches to mapped length is less than this
value. See STAR documentation for more information on setting
this parameter

--seedSearchStartLmax
<seedSearchStartLmax>

Adjusting this parameter by providing a lower number will im-
prove mapping sensitivity (recommended value = 15 for reads ~
25 nts). See STAR documentation for more information on setting
this parameter

genome_size Only needs to be changed if this argument was provided curing
reference building AND using a two-pass alignment. This should
be the length of the organism’s genome in nucleotides

-m Number of max processors to use for tasks (default: No limit)

28 Chapter 2. Table of contents

xpresspipe Documentation, Release 0.6.2

2.8.2 Example 1: Run pipeline on paired-end RNA-seq sample files

$ xpresspipe peRNAseq \
-i pe_test \
-o pe_out \
-r pe_reference \
--gtf transcripts.gtf \
-e pe_test \
-a AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC

→˓\
--method TPM \
--sjdbOverhang 100

2.9 Ribosome Profiling Pipeline

The following pipeline will pre-process, align, and quality check ribosome profiling samples using the sub-modules
discussed in other sections of this documentation. For more detailed information concerning these steps, please refer
to the Align chapter for the step you are interested in.

2.9.1 Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe riboseq --help

Required Arguments Description
-i <path>, --input <path> Path to input directory – if paired-end, file names should be exactly

the same except for r1/r2.fastq or similar suffix
-o <path>, --output <path> Path to output directory
-r <path>, --reference <path> Path to parent organism reference directory
-g </path/transcripts.gtf>,
--gtf </path/transcripts.gtf>

Path and file name to GTF used for alignment quantification (only
used for HTSeq quantification)

-cdna_fasta </path/cdna_fasta.
fa>

Path and file name to reference cDNA FASTA file for P-site refer-
ence generation/location

-e, --experiment Experiment name

2.9. Ribosome Profiling Pipeline 29

xpresspipe Documentation, Release 0.6.2

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
--two-pass Use a two-pass STAR alignment for novel splice junction discov-

ery
-a <adapter1 ...> [<adapter1
...> ...], --adapter <adapter1
...> [<adapter1 ...> ...]

Specify adapter(s) in list of strings – for single-end, only provide
one adapter – if None are provided, software will attempt to auto-
detect adapters – if “POLYX” is provided as a single string in the
list, polyX adapters will be trimmed. If you want to auto-detect
adapters in for paired-end reads, provide None twice

-q <PHRED_value>, --quality
<PHRED_value>

PHRED read quality threshold (default: 28)

--min_length <length_value> Minimum read length threshold to keep for reads (default: 17)
--max_length <length_value> Maximum read length threshold to keep for reads (default: 0).

Setting this argument to 0 will result in no upper length limit.
--remove_rrna Provide flag to remove rRNA records from alignment files (BAM

files)
--front_trim <length> Number of base pairs to trim from the 5’ ends of reads (not avail-

able for polyX trimming) (default: 1)
--umi_location <location> Provide parameter to process UMIs – provide location (if working

with internal UMIs that need to be processed after adapter trim-
ming, provide “3prime”; else see fastp documentation for more
details, generally for single-end sequencing, you would provide
‘read1’ here; does not work with -a polyX option)

--umi_length <length> Provide parameter to process UMIs – provide UMI length (must
provide the –umi_location argument); does not work with -a polyX
option)

--spacer_length <length> Provide UMI spacer length, if exists. (default: 0)
--no_multimappers> Include flag to remove multimapping reads to be output and used

in downstream analyses
--deduplicate Include flag to quantify reads with de-duplication (will search for

files with suffix _dedupRemoved.bam)
--output_bed Include flag to output BED files for each aligned file
-c, --quantification_method Specify quantification method (default: htseq; other option: cuf-

flinks. If using Cufflinks, no downstream sample normalization is
required)

--feature_type <feature> Specify feature type (3rd column in GTF file) to be used if quanti-
fying with htseq (default: CDS)

--stranded <fr-unstranded/
fr-firststrand /
fr-secondstrand||no/yes>

Specify whether library preparation was stranded (Options before
|| correspond with Cufflinks inputs, options after correspond with
htseq inputs)

--method <RPM, RPKM, FPKM,
TPM>

Normalization method to perform (options: “RPM”, “TPM”,
“RPKM”, “FPKM”) – if using either TPM, RPKM, or FPKM, a
GTF reference file must be included

--vcf </path/to/file.vcf> Provide full path and file name to VCF file if you would like detect
personal variants overlapping alignments

--batch </path/filename.tsv> Include path and filename of dataframe with batch normalization
parameters

--sjdbOverhang
<sjdbOverhang_amount>

Specify length of genomic sequences for constructing splice-aware
reference. Ideal length is read length - 1, so for 2x100bp
paired-end reads, you would use 100 - 1 = 99. However, the default
value of 100 should work in most cases

--mismatchRatio
<mismatchRatio>

Alignment ratio of mismatches to mapped length is less than this
value. See STAR documentation for more information on setting
this parameter

--seedSearchStartLmax
<seedSearchStartLmax>

Adjusting this parameter by providing a lower number will im-
prove mapping sensitivity (recommended value = 15 for reads ~
25 nts). See STAR documentation for more information on setting
this parameter

genome_size Only needs to be changed if this argument was provided curing
reference building AND using a two-pass alignment. This should
be the length of the organism’s genome in nucleotides

-m Number of max processors to use for tasks (default: No limit)

30 Chapter 2. Table of contents

xpresspipe Documentation, Release 0.6.2

2.9.2 Example 1: Run pipeline on ribosome profiling sample files

$ xpresspipe riboseq \
-i riboprof_test \
-o ribopipe_out \
-r se_reference \
--gtf se_reference/transcript_CT.gtf \
--cdna_fasta se_reference/cdna_seqs.fa \
-e riboprof_test \
-a CTGTAGGCACCATCAAT \
--method RPM \
--sjdbOverhang 49

2.9.3 Example 2: Run pipeline on ribosome profiling sample files with UMIs

If following a ribosome profiling protocol that utilizes 3’ UMIs (unique molecular identifiers), as in McGlincey,
2017, you will want to provide the relevant details to the riboseq sub-module. In this case, they use a 5 nucleotide
UMI that is found at the 3’-end of each read, so the --umi_location 3prime and --umi_length 5 options
should be used. If a UMI spacer is part of the UMI structure, this can be provided with the --umi_spacer option
with the spacer length as input.

$ xpresspipe riboseq \
-i riboprof_test \
-o ribopipe_out \
-r se_reference \
--gtf se_reference/transcript_CT.gtf \
--cdna_fasta se_reference/cdna_seqs.fa \
-e riboprof_test \
-a CTGTAGGCACCATCAAT \
--method RPM \
--sjdbOverhang 49 \
--umi_location 3prime \
--umi_length 5 \
--umi_spacer 0

2.10 Quality Control

2.10.1 Read Distribution Analysis

When performing RNA-seq, your sequencing library population is important to assess to ensure a quality sequencing
run. Unexpected populations can be indicative of RNA degradation or other effects. In ribosome profiling, the
expected footprint size is ~28-30 nucleotides, so you would expect a peak in this region when running your analysis.
The following module will run read distribution analysis for all fastq samples within a given directory. It is
recommended this analysis be performed on trimmed reads to clean up adapters and get the true distribution of
sequence reads in the library. When this is run within the pipeline, it will analyze just the post-trimming fastq files.

Additionally, if running one of XPRESSpipe’s pipelines, you can refer to the MultiQC html file for general
summary statistics, which include read length distributions for all samples.

2.10. Quality Control 31

https://pubmed.ncbi.nlm.nih.gov/28579404/
https://pubmed.ncbi.nlm.nih.gov/28579404/

xpresspipe Documentation, Release 0.6.2

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe readDistribution --help

Required Arguments Description
-i <path>, --input <path> Path to input directory of trimmed fastq (or untrimmed fastq) files
-o <path>, --output <path> Path to output directory

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
-t <SE or PE>, --type <SE or
PE>

Sequencing type (“SE” for single-end, “PE” for paired-end)

-e <experiment_name>,
--experiment <experiment_name>

Experiment name

-m Number of max processors to use for tasks (default: No limit)

Example 1: Analyze read distributions from ribosome profiling libraries

$ xpresspipe readDistribution -i riboprof_out/trimmed_fastq -o riboprof_out -e se_test

2.10.2 Metagene Analysis

Analyze each sequencing sample to ensure equal distribution of reads across all transcripts. Can be useful in
identifying 5’ or 3’ biases in sequence preparation.
Requires a transcriptome-mapped BAM files, which can be output by STAR and are automatically output during any
XPRESSpipe alignment run.

$ xpresspipe metagene --help

32 Chapter 2. Table of contents

https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf

xpresspipe Documentation, Release 0.6.2

Required Arguments Description
-i <path>, --input <path> Path to input directory of transcriptome-mapped BAM files
-o <path>, --output <path> Path to output directory
-g </path/transcripts.gtf>,
--gtf </path/transcripts.gtf>

Path and file name to un-modified reference GTF

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
-e <experiment_name>,
--experiment <experiment_name>

Experiment name

--feature_type <feature_type> Specify feature type (3rd column in GTF file) to be used in calcu-
lating metagene coverage (default: exon; alternative: CDS)

--bam_suffix <suffix> Change from default suffix of toTranscriptome.out.bam
if transcriptome-mapped files were processed outside of
XPRESSpipe

-m <processors>,
--max_processors <processors>

Number of max processors to use for tasks (default: No limit)

Example 1: Analyze metagene profiles of sequence libraries

- Use default transcript reference (maps to all transcripts, even if non-coding)

$ xpresspipe metagene -i riboprof_out/alignments/ -o riboprof_out -g se_reference/
→˓transcripts.gtf -e se_test

Note: As you can probably see, there are systematic 5’ biases in these library preparations. A good RNA-seq library
should generally have even coverage across all transcript positions.

2.10.3 Intron-collapsed Gene Coverage Analysis

Plot the coverage of a given gene for a sample or set of samples with introns collapsed.

2.10. Quality Control 33

xpresspipe Documentation, Release 0.6.2

$ xpresspipe geneCoverage --help

Required Arguments Description
-i <path>, --input <path> Path to input directory of transcriptome-aligned BAM files
-o <path>, --output <path> Path to output directory
-g </path/transcripts.gtf>,
--gtf </path/transcripts.gtf>

Path and file name to reference GTF

-n <gene_name>, --gene_name
<gene_name>

Gene name (case sensitive)

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
-e <experiment_name>,
--experiment <experiment_name>

Experiment name to save output summaries as

--bam_suffix <suffix> Change from default suffix of toTranscriptome.out.bam if using a
different BAM file

--type <type> Record type to map across (i.e. “exon”, “CDS”) (case-sensitive)
--samples <sample_list>
[<sample_list> ...]

Provide a space-separated list of sample names to include in anal-
ysis (will only include those listed, and will plot in the order listed)

--sample_names <suffix> Provide a space-separated list of sample names to use for labels
--plot_color <color> Indicate plotting color
-m <processors>,
--max_processors <processors>

Number of max processors to use for tasks (default: No limit)

Example 1: Analyze gene coverage profile of sequence libraries

- Use default transcript reference (will generate a longest transcript-only reference)
- Analyze SLC1A1
- Analyze along chosen record type (default: exon, but could also use CDS if looking at ribosome profiling data)
- Analyzing BAM files ending in sort.bam
- Specifying names to use in plotting – if not using --samples, these files will be plotted alphabetically, so the
listed order should also be alphabetical. If using --samples, need to specify names in the same order you provided
for this argument.

$ xpresspipe geneCoverage -i /path/to/bam_files -o ./ -g /path/to/reference.gtf \
-n SLC1A1 --type exon --bam_suffix .sort.bam \
--sample_names SRR1795425 SRR1795433 SRR1795435 SRR1795437

34 Chapter 2. Table of contents

xpresspipe Documentation, Release 0.6.2

Note: The coverage estimations use a 20 nt rolling window mean method to smoothen the coverage plots. In both A
and B in the image above, the top plot was generated with IGV (https://software.broadinstitute.org/software/igv/) and
the bottom with xpresspipe geneCoverage. Green boxes show approximately the same region for comparison.

2.10.4 P-site Analysis

Analyze P-Sites. Useful in ribosome profiling samples for identifying that ribosomes are taking the expected 3
nucleotide steps along a transcript. If this is not apparent from the analysis, it may be indicative of poor sequence
coverage of the ribosome profiling libraries.

2.10. Quality Control 35

https://software.broadinstitute.org/software/igv/

xpresspipe Documentation, Release 0.6.2

$ xpresspipe p_sites --help

Required Arguments Description
-i <path>, --input <path> Path to input directory of transcriptome-aligned BAM files
-o <path>, --output <path> Path to output directory
-g </path/transcripts.gtf>,
--gtf </path/transcripts.gtf>

Path and file name to reference GTF

-cdna_fasta </path/cdna_fasta.
fa>

Path and file name to reference cDNA FASTA file for P-site refer-
ence generation/location

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
--min_length <length_value> Minimum read length threshold to keep for reads (default: 17)
--max_length <length_value> Maximum read length threshold to keep for reads (default: 0).

Setting this argument to 0 will result in no upper length limit.
-e <experiment_name>,
--experiment <experiment_name>

Experiment name to save output summaries as

--bam_suffix <suffix> Change from default suffix of toTranscriptome.out.bam if using a
different BAM file

-m <processors>,
--max_processors <processors>

Number of max processors to use for tasks (default: No limit)

Example 1: Analyze P-sites from ribosome profiling libraries

$ xpresspipe p_sites \
-i riboprof_out/alignments \
-o riboprof_out \
-g se_reference/transcripts.gtf \
-e se_test

2.11 Analysis

2.11.1 Differential Expression Analysis

Differential Expression analysis allows one to determine significantly enriched or depleted genes between two
conditions. XPESSpipe acts as a wrapper for DESeq2. Please refer to its documentation for more information.

Note: If intending to use the diffxpress sub-module, you need to have used --quantification_method
htseq during read quantification as DESeq2 requires integer count data.

Requirements:
- R is installed on your machine and is in your $PATH (this should be handled in the installation)

36 Chapter 2. Table of contents

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302049/
https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302049/

xpresspipe Documentation, Release 0.6.2

- All input files are tab-delimited (with .txt or .tsv suffix)
- Design formula does not include the tilde (~) and there are no spaces

Sample Factor Files

Different factors to be evaluated in the differential expression analysis should each be denoted as a separate factor
column in the sample_info file. For example, if you were

evaluating a experimental vs control experiment for RNA-sequencing, you would provide a sample_info file as
follows:

sample_info.txt

Sample Condition
s1_rna a_WT
s2_rna a_WT
s3_rna b_EXP
s4_rna b_EXP

Your base (denominator) parameter in a given factor column in the sample_info file must be first alphabetically.
In the case provided above, we want to compare the experimental condition VS the wild-type control condition,
however these labels are not alphabetical. In this case, you can append letters to the beginning to force alphabetical
order. For example, if you performed a experiment vs wild-type experiment, you would need to use the labels
b_experiment vs a_wild-type to force a b_experiment / a_wild-type comparison.

If we want to consider additional factors, such as translation efficiency of footprint vs RNA-sequence samples for
ribosome profiling, these should be included as additional factor columns in the sample_info file. Since we want
to perform another comparison with the footprint vs RNA-sequencing samples, we need to again ensure that these
labels for this “Type” factor are listed in the correct alphabetical order to ensure we are performing a footprint VS
RNA-sequencing comparison to reflect translation efficiency.

sample_info.txt

Sample Condition Type
s1_fp a_WT RPF
s1_rna a_WT RNA
s2_fp a_WT RPF
s2_rna a_WT RNA
s3_fp b_EXP RPF
s3_rna b_EXP RNA
s4_fp b_EXP RPF
s4_rna b_EXP RNA

The alphabetical order of the factor names (i.e., “Condition”, “Type”) does not matter. Instead, according to the
DESeq2 documentation, these design factors are evaluated in the order listed.

The DESeq2 design formula specifies what is being modeled from the data.

2.11. Analysis 37

https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#the-deseqdataset

xpresspipe Documentation, Release 0.6.2

Note: As stated in the DESeq2 documentation: With no additional arguments to results, the log2 fold change and
Wald test p value will be for the last variable in the design formula, and if this is a factor, the comparison will be
the last level of this variable over the reference level (see previous note on factor levels). However, the order of the
variables of the design do not matter so long as the user specifies the comparison to build a results table for, using the
name or contrast arguments of results.

So, in the case of Type+Condition+Type:Condition where we are interesting in testing the difference in
translation efficiencies between conditions, the interaction Type:Condition is the coefficient being tested for
differential expression. The model as designed will also account for differences only seen in the Type or
Condition co-variates alone (for example, a specific bias to ribosome footprints vs. mRNA fragments).

For more information on factor levels and design parameters, please see the DESeq2 documentation and this note.
Any standard design formula that will work in DESeq2 will work within the XPRESSpipe wrapper, as long as the
formatted described above is followed.

Other possible variations to DESeq2 analysis are available here, but not all will be compatible with the XPRESSpipe
wrapper. In general, the XPRESSpipe wrapper is best suited to simple multi-factor design (Experimental vs
Wild-type, Footprints vs RNA-sequencing, plus any other factors relevant to your experiment). For advice in
preparing your design formula differently than in the examples listed below, please reach out to us here.

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe diffxpress --help

Required Arguments Description
-i <path/filename.tsv>, --input
<path/filename.tsv>

Path and file name of expression counts matrix

-s <path/filename.tsv>,
--sample <path/filename.tsv>

Path and file name of sample information matrix

--design <formula> Design formula for differential expression analysis (spaces in com-
mand line are conserved in input string. DO NOT INCLUDE ~ OR
SPACES IN FORMULA IN COMMAND LINE, will be automat-
ically added)

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
--shrink Provide argument to perform shrinkage of effect size on log fold

changes. Useful for visualization and ranking of hits

38 Chapter 2. Table of contents

https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#multi-factor-designs
https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#can-i-run-deseq2-to-contrast-the-levels-of-many-groups
https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#variations-to-the-standard-workflow
https://github.com/XPRESSyourself/XPRESSpipe/issues

xpresspipe Documentation, Release 0.6.2

Example 1: Analyze ribosome profiling data

The source files can be found here.
If we want to perform differential expression of translation efficiency for ribosome profiling data, we need to provide
Condition and Type factor columns in the sample_info file. If we want to include the RPF / RNA comparison
to account for translation efficiency, we would need to include these factor label as a column to ensure the appropriate
RPF / RNA evaluation. To perform a comparison between Tm-treated and Untreated cells, we will provide the TM and
UNTR labels for the Condition factor. With the provided design formula used below, we will be calculating:

(𝑅𝑃𝐹TM/𝑅𝑁𝐴TM)
(𝑅𝑃𝐹UNTR/𝑅𝑁𝐴UNTR)

tm_counts.tsv

ribo_untr_a ribo_untr_b ribo_tm_a ribo_tm_b untr_a_hek untr_b_hek tm_a_
→˓hek tm_b_hek
A1BG 29 43 21 11 67 73 56
→˓ 85
A2M 3 5 2 2 73 57 32
→˓ 37
AAAS 1441 1981 934 601 1144 1067 1012
→˓ 1124
AACS 575 727 310 192 351 335 220
→˓ 291
AADAT 98 120 51 29 322 315 192
→˓ 292

tm_deseq.txt

Sample Condition Type
untr_a_hek UNTR RNA
untr_b_hek UNTR RNA
ribo_untr_a UNTR RPF
ribo_untr_b UNTR RPF
tm_a_hek TM RNA
tm_b_hek TM RNA
ribo_tm_a TM RPF
ribo_tm_b TM RPF

$ xpresspipe diffxpress -i counts_data.tsv --sample sample_info.txt --design
→˓Type+Condition+Type:Condition

The output of this analysis will perform differential expression that reflects both TM vs UNTR and RPF (footprints) vs
RNA.

tm_counts_diffx.tsv

baseMean log2FoldChange lfcSE stat pvalue
→˓ padj
ATF4 3283.072674 2.542784311 0.134284453 18.93580577 5.78E-
→˓80 5.03E-76

(continues on next page)

2.11. Analysis 39

https://github.com/XPRESSyourself/xpressyourself_manuscript/tree/main/isrib_analysis/isrib_de/xpresspipe_data_deseq2

xpresspipe Documentation, Release 0.6.2

(continued from previous page)

PTP4A1 460.6444433 2.473962772 0.185061193 13.36834986 9.26E-
→˓41 4.03E-37
SPEN 7902.554413 1.192124338 0.109445545 10.89239713 1.25E-
→˓27 3.63E-24
RPS15A 1823.967865 -1.391099082 0.152069954 -9.147757652 5.81E-
→˓20 1.26E-16
DYNC1H1 11985.60418 0.85282198 0.094425503 9.031691164 1.69E-
→˓19 2.56E-16

From this output, we can focus on the log2FoldChange and padj columns. From this output, we see that ATF4
is the most significantly upregulated gene by translation efficiency between the TM and UNTR conditions, which is
what we expect (see the XPRESSyourself manuscript for further discussion of this example). Further explanations of
the other columns of this output can be found in the DESeq2 documentation.

Example 2: Analyze RNA-seq data

For a standard two-condition RNA-seq experiment comparison, we are only interested in the differential expression
of EXP vs WT. To ensure this comparison if performed correctly, we need to force these Condition factor labels to
be alphabetical. We will thus rename them b_EXP and a_WT and do the following:

expression_counts.tsv

s1 s2 s3 s4 ...
ENSG00000227232 66 59 1 82 ...
ENSG00000240361 35 0 7 72 ...
ENSG00000238009 20 70 85 78 ...
ENSG00000241860 96 7 93 38 ...
ENSG00000187634 73 41 92 77 ...

sample_info.tsv

Sample Condition
s1 a_WT
s2 a_WT
s3 a_WT
s4 a_WT
s5 b_EXP
s6 b_EXP
s7 b_EXP
s8 b_EXP

$ xpresspipe diffxpress -i test_r/test_dataset.tsv --sample test_r/sample_info.tsv --
→˓design Condition

Example 3: Analyze RNA-seq data that was prepared in different batches

If samples were performed in multiple batches and you would like to control for batch effect, you can add a Batch
factor column and provide different batch labels. This example below will control for batch effect and compare EXP
vs WT expression.

40 Chapter 2. Table of contents

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007625
https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

xpresspipe Documentation, Release 0.6.2

See the DESeq2 documentation example for further information.

expression_counts.tsv

s1 s2 s3 s4 ...
ENSG00000227232 66 59 1 82 ...
ENSG00000240361 35 0 7 72 ...
ENSG00000238009 20 70 85 78 ...
ENSG00000241860 96 7 93 38 ...
ENSG00000187634 73 41 92 77 ...

sample_info.tsv

Sample Condition Batch
s1 a_WT batch1
s2 a_WT batch1
s3 a_WT batch1
s4 a_WT batch1
s5 b_EXP batch2
s6 b_EXP batch2
s7 b_EXP batch2
s8 b_EXP batch2

$ xpresspipe diffxpress -i test_r/test_dataset.tsv --sample test_r/sample_info.tsv --
→˓design Batch+Condition

2.11.2 rRNA Probe

Ribosome RNA (rRNA) contamination is common in RNA-seq library preparation. As the bulk of RNA in a cell at
any given time is dedicated to rRNA, and as these rRNA sequences are relatively few and therefore highly repeated,
depletion of these sequences is often desired in order to have better depth of coverage of non-rRNA sequences. In
order to facilitate this depletion, many commercial kits are available that target specific rRNA sequences for
depletion, or that enrich mRNA polyA tails. However, and especially in the case of ribosome profiling experiments,
where RNA is digested to create ribosome footprints that commercial depletion kits won’t detect and polyA selection
kits are inoperable as footprints will not have the requisite polyA sequence. To this end, custom rRNA probes are
recommended, and the rrnaProbe sub-module was designed to facilitate this process.
rrnaProbe works by doing the following:
1. Run FASTQC to detect over-represented sequences
2. Collate these sequences to determine consensus fragments
3. Output rank ordered list of over-represented fragments within the appropriate length range to target for depletion
NOTE: BLAST capability to verify over-represented consensus fragments are indeed rRNA sequences is not yet
incorporated, so any sequences that will be used as probes should be BLAST-verified first.

$ xpresspipe rrnaProbe --help

Required Arguments Description
-i <path>, --input <path> Path to zipped FASTQC files
-o </path/filename>, --output
</path/filename>

Path and file name to write output

2.11. Analysis 41

https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#quick-start
https://www.ncbi.nlm.nih.gov/pubmed/28579404

xpresspipe Documentation, Release 0.6.2

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
-m <value>, --min_overlap
<value>

Minimum number of bases that must match on a side to combine
sequences (default: 5)

--footprint_only Only take zip files that are ribosome profiling footprints (file
names must contain “FP”, “RPF”, or “FOOTPRINT”)

Example 1: Generate rank-ordered list of over-represented sequences

$ xpresspipe rrnaProbe -i riboprof_out/fastqc_out/ -o riboprof_out/sequences.txt --
→˓footprint_only

TTGATGATTCATAATAACTTTTCGAATCGCAT 514832
TATAAATCATTTGTATACGACTTAGAT 121739
TTGATGATTCATAATAACTTTTCGAATCGCAT 15776
TTTGATGATTCATAATAACTTTTCGAATCGCAC 33325
ATAAATCATTTGTATACGACTTAGAC 13603

2.12 Read Pre-Processing

2.12.1 Read Trimming

Trimming is a necessary part of RNAseq data processing due to the technological limitations described below:

- Inherent in RNA-seq library creation, RNA is fragmented and adapter sequences are ligated to the sequence. These
adapters include information such as sample batch and act as a primer for the sequencer to recognize the fragment as
something to analyze. However, these adapters, once sequenced, prevent alignment to a reference as large chunks of
the fragment are synthetic sequence not found in the actual organism’s genome/transcriptome.
- A sequencer’s job is to read a fragment base by base and determine the nucleotide species each step of the way.
While the technology has greatly improved over the years, a probability of error remains. Mis-called bases can
prevent proper alignment of the sequenced fragment to the reference. Therefore, it is important for low confidence
base calls to be trimmed from each read.

Trimming is performed by fastp.

2.12.2 Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe trim --help

Required Arguments Description
-i <path>, --input <path> Path to input directory – if paired-end, file names should be exactly

the same except for r1/r2.fastq or similar suffix
-o <path>, --output <path> Path to output directory

42 Chapter 2. Table of contents

https://github.com/OpenGene/fastp

xpresspipe Documentation, Release 0.6.2

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
-a <adapter1 ...> [<adapter1
...> ...], --adapter <adapter1
...> [<adapter1 ...> ...]

Specify adapter(s) in list of strings – for single-end, only provide
one adapter – if None are provided, software will attempt to auto-
detect adapters – if “POLYX” is provided as a single string in the
list, polyX adapters will be trimmed. If you want to auto-detect
adapters in for paired-end reads, provide None twice

-q <PHRED_value>, --quality
<PHRED_value>

PHRED read quality threshold (default: 28)

--min_length <length_value> Minimum read length threshold to keep for reads (default: 17)
--max_length <length_value> Maximum read length threshold to keep for reads (default: 0).

Setting this argument to 0 will result in no upper length limit.
--front_trim <length> Number of base pairs to trim from the 5’ ends of reads (not avail-

able for polyX trimming) (default: 1)
--umi_location <location> Provide parameter to process UMIs – provide location (if working

with internal UMIs that need to be processed after adapter trim-
ming, provide “3prime”; else see fastp documentation for more
details, generally for single-end sequencing, you would provide
‘read1’ here; does not work with -a polyX option)

--umi_length <length> Provide parameter to process UMIs – provide UMI length (must
provide the –umi_location argument); does not work with -a polyX
option)

--spacer_length <length> Provide UMI spacer length, if exists. (default: 0)
-m Number of max processors to use for tasks (default: Max)

2.12.3 Example 1: Trim ribosome profiling sequence data using default preferences

- Raw reads are fastq-like and found in the -i riboprof_test/ directory. Can be uncompressed or
compressed via gz or zip
- A general output directory has been created, -o riboprof_out/

- All other arguments use the default value

$ xpresspipe trim -i riboprof_test/ -o riboprof_out/

2.12.4 Example 2: Predict adapter and trim ribosome profiling sequence data

- A minimum read length of 22 nucleotides after trimming is required in order to keep the read
- A maximum or 6 processors can be used for the task
- The --adapters argument was not passed, so an attempt to discover adapter sequences will be made (this is not
always the most efficient or thorough method of trimming and providing the adapter sequences is recommended)

$ xpresspipe trim -i riboprof_test/ -o riboprof_out/ --min_length 22 -m 6

2.12. Read Pre-Processing 43

xpresspipe Documentation, Release 0.6.2

2.12.5 Example 3: Trim adapter from ribosome profiling reads

- The default minimum read length threshold will be used
- The maximum number of processors will be used by default
- The --adapters argument was passed, so adapter sequences will trimmed explicitly

$ xpresspipe trim -i riboprof_test/ -o riboprof_out/ -a CTGTAGGCACCATCAAT

2.12.6 Example 4: Predict adapter and trim paired-end sequence data

- The --adapters argument was passed as None None, so an attempt to discover adapter sequences will be
made for paired-end reads. The -a None None syntax is essential for trim to recognize the reads as paired-end

$ xpresspipe trim -i pe_test/ -o pe_out/ -a None None

2.12.7 Example 5: Pass explicit adapter and trim paired-end sequence data

- The --adapters argument was passed, so adapter sequences will trimmed explicitly

$ xpresspipe trim -i pe_test/ -o pe_out/ -a ACACTCTTTCCCTACACGACGCTCTTCCGATC
→˓GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG

2.12.8 Example 6: Trim single-end sequence data of polyX adapters

- The --adapters POLYX argument was passed, so adapter sequences will trimmed of polyX sequences

$ xpresspipe trim -i se_test/ -o se_out/ -a POLYX

2.12.9 Example 7: Trim adapter from ribosome profiling reads and process UMIs

- The default minimum read length threshold will be used
- The maximum number of processors will be used by default
- The --adapters argument was passed, so adapter sequences will trimmed explicitly
- The --umi_location argument was passed, so adapter sequences will trimmed of UMI sequences from, in this
case, the 3’-end of reads
- The --umi_length argument was passed, so adapter sequences will process UMIs as 5 nucleotides long in this
case

44 Chapter 2. Table of contents

xpresspipe Documentation, Release 0.6.2

$ xpresspipe trim \
-i riboprof_test/ \
-o riboprof_out/ \
-a CTGTAGGCACCATCAAT \
--umi_location 3prime \
--umi_length 5

2.13 Alignment

In order to quantify transcription on a transcript to transcript basis, individual reads called during sequencing must be
mapped to the genome. While there are multiple alignment software packages available, XPRESSpipe uses a current
version of STAR to perform this step in transcription quantification for several reasons:

- Performance: While computationally greedy (a human genome alignment requires upwards of 30 Gb RAM), the
performance and accuracy is superior to the majority of other splice aware aligners currently available
- Splice Junction Aware: STAR is capable of mapping reads spanning a splice junction, where more traditional
packages, such as Bowtie, are incapable of doing so and are better suited for tasks such as genome alignment.
- Standardized: The foundation of the pipeline used in XPRESSpipe is based in the TCGA standards for RNAseq
alignment. This method utilizes a guided or 2-pass alignment program. In the guided alignment, a GTF with
annotated splice junctions is used to guide the alignments over splice juntions. In the 2-pass alignment, reads are
mapped across the genome to identify novel splice junctions. These new annotations are then incorporated into the
reference index and reads are re-aligned with this new reference. While more time-intensive, this step can aid in
aligning across these junctions, especially in organisms where the transcriptome is not as well annotated.
- Variant Aware: The user can provide a VCF, such as those provided by ClinVar and dbSNP. These files are useful
in integrating information about common or disease nucleotide variants into the RNA-Seq alignment stage. The files
you use should match the build of the genome you are using (i.e., if using Homo Sapiens GRCh38, these builds
should match between curated reference files and VCF file).

Note: rRNA depletion using the --remove_rrna option removes rRNA alignments from BAM files. This works
by generating a BED file behind the scenes for rRNA transcripts, and removing them from the genome-aligned BAM
file using bedtools intersect. For transcriptome-aligned BAM files, a modified GTF file is generated for this
step only with rRNA records removed in order to prevent their transcript mapping during this step.

2.13.1 Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe align --help

2.13. Alignment 45

https://github.com/alexdobin/STAR
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792058/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/
ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/

xpresspipe Documentation, Release 0.6.2

Required Arguments Description
-i <path>, --input <path> Path to input directory
-o <path>, --output <path> Path to output directory
-r <path>, --reference <path> Path to parent organism reference directory (must have a file called

transcripts.gtf within)
-t <SE or PE>, --type <SE or
PE>

Sequencing type (“SE” for single-end, “PE” for paired-end)

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
--two-pass Use a two-pass STAR alignment for novel splice junction discov-

ery
--remove_rrna Provide flag to remove rRNA records from alignment files (BAM

files)
--no_multimappers> Include flag to remove multimapping reads to be output and used

in downstream analyses
--deduplicate Include flag to quantify reads with de-duplication (will search for

files with suffix _dedupRemoved.bam)
--vcf </path/to/file.vcf> Provide full path and file name to VCF file if you would like detect

personal variants overlapping alignments
--output_bed Include flag to output BED files for each aligned file
--sjdbOverhang
<sjdbOverhang_amount>

Specify length of genomic sequences for constructing splice-aware
reference. Ideal length is read length - 1, so for 2x100bp
paired-end reads, you would use 100 - 1 = 99. However, the default
value of 100 should work in most cases

--mismatchRatio
<mismatchRatio>

Alignment ratio of mismatches to mapped length is less than this
value. See STAR documentation for more information on setting
this parameter

--seedSearchStartLmax
<seedSearchStartLmax>

Adjusting this parameter by providing a lower number will im-
prove mapping sensitivity (recommended value = 15 for reads ~
25 nts). See STAR documentation for more information on setting
this parameter

genome_size Only needs to be changed if this argument was provided curing
reference building AND using a two-pass alignment. Enter the
size of your organism’s genome in nucleotides

-m Number of max processors to use for tasks (default: No limit)

2.13.2 Single-End RNAseq Alignment

The following runs single-end reads alignment using the specified XPRESSpipe-formatted reference directory.
Notes:
- For the --sjdbOverhang argument, the same value should be entered that was used when creating the STAR
reference files.
- Ribosome profiling data can be run as a single-end RNA-seq

46 Chapter 2. Table of contents

xpresspipe Documentation, Release 0.6.2

Example 1: Single-end RNAseq alignment

- Raw reads are fastq-like and found in the -i /path/to/input/files/ directory. Can be uncompressed or
compressed via gz or zip
- A general output directory has been created, -o riboseq_out/

- --type is specified as ‘SE’ and path to parent reference directory is provided
- The value for --sjdbOverhang used in reference creation is provided. Failure to do so will trigger an error
- BED and BIGWIG files will be output in their own directories in output
- All other arguments use the default value

$ xpresspipe align -i /path/to/input/files/ -o riboseq_out/ -t SE -r /path/to/
→˓reference/ --sjdbOverhang 49 --output_bed --output_bigwig

2.13.3 Paired-End RNAseq Alignment

The following runs paired-end reads alignment using the specified XPRESSpipe-formatted reference directory.
Notes:
- For the --sjdbOverhang argument, the same value should be entered that was used when creating the STAR
reference files.

Example 1: Paired-end RNAseq alignment

- Raw reads are fastq-like and found in the -i pe_test/ directory. Can be uncompressed or compressed via gz
or zip
- A general output directory has been created, -o pe_out/

- --type is specified as ‘PE’ and path to parent reference directory is provided
- The value for --sjdbOverhang used in reference creation is provided. Failure to do so will trigger an error. In
this case, since the reference was created using default values, the optional flag is not used
- BED and BIGWIG files are not output
- All other arguments use the default value

$ xpresspipe align -i /path/to/input/files/ -o riboseq_out -t PE -r /path/to/
→˓reference/

2.14 Read Quantification

2.14.1 Quantifying and Collating Reads

In order to quantify aligned reads, they must be counts to a reference transcriptome. This will tell you in relative
terms how much of each transcript is expressed in a system. The following sub-module will perform this
quantification, as well as compile all sample quantifications into a single data matrix for downstream use.
XPRESSpipe uses Cufflinks as the default, but HTSeq can also be specified. Cufflinks is one of the most accurate
read quantifiers currently available, but HTSeq is still widely used and is part of the TCGA pipeline.

2.14. Read Quantification 47

http://cole-trapnell-lab.github.io/cufflinks/
https://htseq.readthedocs.io/en/release_0.11.1/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/

xpresspipe Documentation, Release 0.6.2

2.14.2 Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe count --help

Required Arguments Description
-i <path>, --input <path> Path to input directory of SAM files
-o <path>, --output <path> Path to output directory
-g </path/transcripts.gtf>,
--gtf </path/transcripts.gtf>

Path and file name to GTF used for alignment quantification (if a
modified GTF was created, this should be provided here; if using
Cufflinks and you want isoform abundance estimates, important
that you do not provide a longest transcript only GTF)

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
-e, --experiment Experiment name
-c, --quantification_method Specify quantification method (default: htseq; other option: cuf-

flinks. If using Cufflinks, no downstream sample normalization is
required)

--feature_type <feature> Specify feature type (3rd column in GTF file) to be used if quanti-
fying with htseq (default: CDS)

--stranded <fr-unstranded/
fr-firststrand /
fr-secondstrand||no/yes>

Specify whether library preparation was stranded (Options before
|| correspond with Cufflinks inputs, options after correspond with
htseq inputs)

--deduplicate Include flag to quantify reads with de-duplication (will search for
files with suffix _dedupRemoved.bam)

--bam_suffix Change from default suffix of _Aligned.sort.bam
-m Number of max processors to use for tasks (default: No limit)

2.14.3 Example 1: Count ribosome profiling alignments

- Input points to directory with SAM alignment files that are sorted by name
- An experiment name is provided to name the final data matrix
- Reads are quantified only to coding genes and are not counted if mapping to the first x nucleotides of each transcript
exon 1 (x being the value provided for truncation when initially creating the reference files)

$ xpresspipe count -i riboseq_out/alignments/ -o riboseq_out/ -r se_reference/ -g se_
→˓reference/transcripts_codingOnly_truncated.gtf -e se_test

2.14.4 Example 2: Count paired-end alignments

- Input points to directory with SAM alignment files that are sorted by name
- An experiment name is not provided and a default name is given to the data matrix using datatime
- Reads are quantified to the entire transcriptome (coding and non-coding, no truncation)

48 Chapter 2. Table of contents

xpresspipe Documentation, Release 0.6.2

$ xpresspipe count -i pe_out/alignments/ -o pe_out/ -r pe_reference/

2.15 Normalize

Note: Sample and batch normalization can be performed in a single command. If this is done, batch normalization
will be performed following sample normalization.

2.15.1 Sample Normalization

Due to inherent biases in RNA-seq samples (most commonly, different amounts of total RNA per sample in a given
lane), samples must be normalized to obtain an accurate representation of transcription per sample. Additional
normalization can be performed to normalize for transcript length (“per kilobase million”) as longer transcripts will
naturally create more fragments mapping to a given gene, thus potentially making 1 transcript appear as many when
quantified.

2.15.2 Assumptions

- R is installed on your machine and is in your $PATH if using the batch argument
- All input files are tab-delimited (with .txt or .tsv suffix)

2.15.3 Normalization Methods

The following equations summarize different way to normalize samples for RNA-seq:

Reads per Million
𝑅𝑃𝑀𝑔 =

1𝑒6·𝑟ge∑︀𝑛
𝑔=1 𝑟ge

Reads per Kilobase of Reads per Million
𝑅𝑃𝐾𝑀𝑔 =

1𝑒9·𝑟ge

(
∑︀𝑛

𝑔=1 𝑟ge)·lge

Fragments per Kilobase of Fragments per Million
𝐹𝑃𝐾𝑀𝑔 =

1𝑒9·𝑓ge

(
∑︀𝑛

𝑔=1 𝑓ge)·lge

Transcripts per Million (same as RPKM, but order of operations is different)

𝑇𝑃𝑀𝑔 =
1𝑒6·𝑟ge

(
∑︀𝑛

𝑔=1(
1𝑒3·𝑟ge

𝑙ge
))·lge

In each of the above, assume g is gene n, ge is cumulative exon space for gene n, r is total reads, f is total fragments,
and l is length

2.15.4 Batch Correction

When multiple people perform library preparation, or when libraries are prepared on different days, this can lead to
inherent biases in count distributions between batches of samples. It is therefore necessary to normalize these effects

2.15. Normalize 49

xpresspipe Documentation, Release 0.6.2

when appropriate.

2.15.5 Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe normalizeMatrix --help

Required Arguments Description
-i <path/filename.tsv>,
--input <path/filename.tsv>

Path and file name of expression counts matrix

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
--method <RPM, RPKM, FPKM,
LOG>

Normalization method to perform (options: “RPM”, “TPM”,
“RPKM”, “FPKM”) – if using either TPM, RPKM, or FPKM, a
GTF reference file must be included

-g </path/transcripts.gtf>,
--gtf </path/transcripts.gtf>

Path and file name to reference GTF (RECOMMENDED: Do not
use modified GTF file)

--batch </path/filename.tsv> Include path and filename of dataframe with batch normalization
parameters

2.15.6 Example 1: Perform RPKM normalization on single-end RNA-seq data

$ xpresspipe normalizeMatrix -i riboprof_out/counts/se_test_counts_table.tsv --method
→˓RPKM -g se_reference/transcripts_coding_truncated.gtf

2.15.7 Example 2: Perform batch normalization on RNA-seq data

Inputs

> batch = pd.read_csv('./riboprof_out/counts/batch_info.tsv', sep='\t', index_col=0)
> batch

Sample Batch
0 s1 batch1
1 s2 batch2
2 s3 batch1
3 s4 batch2

Code

50 Chapter 2. Table of contents

xpresspipe Documentation, Release 0.6.2

$ xpresspipe normalizeMatrix -i riboprof_out/counts/se_test_counts_table.tsv --batch
→˓riboprof_out/counts/batch_info.tsv

2.16 Other Features

2.16.1 Convert Counts Table Gene Names

Count tables are often produced with systematic names used to label each gene. The following sub-module will
convert the column of systematic gene names to a common name using a reference GTF file

Arguments

The help menu can be accessed by calling the following from the command line:

$ xpresspipe convertNames --help

Required Arguments Description
-i <path/filename>, --input
<path/filename>

Path and file name to sequence dataframe

-g </path/transcripts.gtf>,
--gtf </path/transcripts.gtf>

Path and file name to GTF

Optional Arguments Description
--suppress_version_check Suppress version checks and other features that require internet

access during processing
--orig_name_label <label> Label of original name (usually “gene_id “)
--orig_name_location
<position>

Position in last column of GTF where relevant data is found (i.e. 0
would be the first sub-string before the first comma, 3 would be the
third sub-string after the second comma before the third comma)

--new_name_label <label> Label of original name (usually “gene_id “)
--new_name_location <position> Position in last column of GTF where relevant data is found (i.e. 0

would be the first sub-string before the first comma, 3 would be the
third sub-string after the second comma before the third comma)

--refill <label> In some cases, where common gene names are unavailable, the
dataframe will fill the gene name with the improper field of the
GTF. In this case, specify this improper string and these values
will be replaced with the original name

Example 1: Convert gene names in count dataframe

$ xpresspipe convertNames -i riboprof_out/counts/se_test_counts_table.csv -g se_
→˓reference/transcripts.gtf

2.16. Other Features 51

xpresspipe Documentation, Release 0.6.2

2.17 FAQs

If you have questions, requests, or bugs to report, please use the XPRESSpipe issues forum.

2.17.1 A step of the pipeline is erroring for no apparent reason

First, please check the output in your terminal, along with in the log file. If the step that the pipeline breaks on does
not output any useful information, check that the required dependencies were installed correctly. For example, when
we were testing the the geneCoverage module on a supercomputing cluster, the pipeline responded saying it
couldn’t find the appropriate index file. It turned out the R package, GenomicFeatures was not downloaded due to
issues with the rtracklayers package. For this situation, we fixed it by uninstalling Anaconda and reinstalling the
dependencies, as below:

Run each of these steps. If a command doesn't work, skip to the next one
$ conda install anaconda-clean
$ anaconda-clean --yes
$ rm -rf ~/miniconda
$ rm ~/.condarc
$ rm -r ~/.conda/

$ cd ~
$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash ~/Miniconda3-latest-Linux-x86_64.sh
$ conda env base --file XPRESSpipe/requirements.yml

During Anaconda installation, reply yes to all prompts. If you wish to install the XPRESSpipe dependencies to their
own environment, replace base with your_environment_name_here in the last step. If XPRESSpipe
continues to malfunction after completion of these steps, please reach out to us on the XPRESSpipe issues forum.

2.17.2 The pipeline breaks because of a segmentation fault during alignment.

Occasionally, depending on allocation of CPUs, 32 virtual CPUs may be available, but only 16 are configured. This
may lead to memory overloads by trying to use more than configured, as the large index files will be temporarily
copied to each processing core. If this is the case, provide the max_processors with the number in the log file
stated as available. For a computing node with 64 GB of RAM available, we generally see that 20 CPUs is stable. See
log example below:

sh: line 1: 70311 Segmentation fault STAR --runThreadN 30 ...

or

WARNING: fastp uses up to 16 threads although you specified 32

52 Chapter 2. Table of contents

https://github.com/XPRESSyourself/XPRESSpipe/issues
https://github.com/XPRESSyourself/XPRESSpipe/issues

xpresspipe Documentation, Release 0.6.2

2.18 Updates

2.18.1 v0.6.3

Major
- New installation method: Instead of installing the software with the pip install . method, a new install script
is provided that handles installation of some dependencies better. The new method now only requires the user to run
bash install.sh. See the Installation page for an updated walkthrough on this update.

Minor
- Updated docs and examples
- Removed unused variable in args_dict

2.18.2 Previous versions

v0.6.2

- Added --suppress_version_check flag to enable use of XPRESSpipe without internet access
- Added --smoothen flag to any module that uses the geneCoverage sub-module. By default, a sliding window
will not be used to smoothen the geneCoverage plots. If provided, a rolling window set at 20 will be used to
smoothen the plots.

v0.6.1

- Add flag during curation steps to allow of UCSC/refseq GTFs during GTF modification steps (truncation, etc.)
Usage: Provide the --ucsc_format flag to the curateReference or modifyGTF sub-modules. These
modifications in format only apply to XPRESSpipe GTF truncation features. Any formatting errors with the
GTF file that pertain to alignment, counting, etc. dependencies will need to be addressed by the user.

- Fixed error in XPRESSpipe interface with XPRESSplot’s convert_names function where XPRESSpipe did not read
in first column of table as index

v0.6.0

- Minor modification to instructions on how to install XPRESSpipe and use its conda environment on a
supercomputing node.
- Removed version specifications for conda environment setup to ease install (fixes issues in a better way than the
solution from v0.5.0)
- Moved required riboWaltz functions to XPRESSpipe as installation has been recurrently problematic

v0.5.0

- Fixed issue where genome size calculation would round up and miscalculate genome_size parameter for STAR.
- Added fastp_lite for removal of 3’ internal UMIs (generally takes ~1 min per RNA-seq sample with about 30
million reads)

- For example:
5’-read-spacer-UMI-adapter-3’

2.18. Updates 53

xpresspipe Documentation, Release 0.6.2

- Integrating this addition into options and trimming
- Updated MANIFEST file to reliably copy R and Julia scripts to executing folder for XPRESSpipe
- Updated command builder (xpresspipe build) to include recent additions
- Updated requirements to prevent issue where solved environment required to install R 3.5.1 or greater would
create an error where samtools markdup would freeze
- Frequently, R 3.5.1 or greater would create library linking error to stringi, causing GenomicFeatures to
not function. Added to RbuildIndex.r to reinstall stringi, which appears to clear up the issue.

v0.4.4

- Fixed issue with string catenation during UMI fastp call where UMI length was not properly forced to a string

v0.4.3

- Fixed issue with metagene where parallelization overloaded memory and resulted in OOM errors. Fixed by making
memory thresholding slightly more strict.

v0.4.2

- Fixed convert_names xpressplot call

v0.4.1

- Introduced some restrictions to dependency versions. Some newer versions of dependencies were acting
problematic. Will try to figure out how to allow for current versions of these dependencies to be used
- Fixed plotting issue with periodicity plots

v0.4.0

- Introduced rRNA depletion during alignment step (previously could only do so during the quantification step)
- Expanded periodicity analysis to cover more holistic P-site analysis (report codon usage stats). The submodule
previously called periodicity is now called by p_sites
- Allow for setting upper limit threshold for read length during pre-processing reads and P-site analysis (previously
only a lower limit was available)
- All documentation associated with this changes has been updated.

v0.3.1

- Fix BAM file threshold for metagene and geneCoverage to avoid OOM errors
- Turn off BAM file threshold for counting (low memory footprint, so can use all cores available)
- Import openssl library manually in Rperiodicity – occasionally had trouble finding the library on its own and would
error

54 Chapter 2. Table of contents

xpresspipe Documentation, Release 0.6.2

v0.3.0

- Transfers R dependency installs to Anaconda environment load
- Modified fastq and bam memory factor to optimize resources
- Rebuilt read distribution module with JuliaLang for super memory efficiency during parallelization
- Fixed issue where one| -exon genes would not display feature annotations in geneCoverage modules
- Made matplotlib backend calls flexible for HPC usage
- Made directory checks more thorough
- Fixed a potential off| -by| -one issue with GTF truncator
- Updated appropriate tests
- Updates to documentation
- Added code of conduct and contributions information

v0.2.4-beta

- Manuscript submission version
- Fixed issues with using polyX adaptors
- Allowed more multi-threading during post-processing of aligned reads to use resources more efficiently
- Added integrated pipeline tests for Travis CI build to assess pipeline integrity each push
- Updated install walkthrough video

2.18. Updates 55

xpresspipe Documentation, Release 0.6.2

56 Chapter 2. Table of contents

CHAPTER 3

License

XPRESSpipe and the XPRESSyourself suite is developed and maintained by Jordan Berg in the Rutter Lab @ the
University of Utah, along with other collaborators. We welcome pull requests if you would like to contribute to the
project.

XPRESSpipe is perpetually open source under a GNU General Public License (v3.0).

57

https://github.com/XPRESSyourself/XPRESSpipe
https://github.com/XPRESSyourself/
https://j-berg.github.io/
https://biochem.utah.edu/rutter/index.html
https://www.utah.edu/
https://github.com/XPRESSyourself/XPRESSpipe

xpresspipe Documentation, Release 0.6.2

58 Chapter 3. License

CHAPTER 4

Questions?

If you have questions, requests, or bugs to report, please use the XPRESSpipe issues forum.

59

https://github.com/XPRESSyourself/XPRESSpipe/issues

	About
	Table of contents
	Overview
	Quickstart
	Beginner’s Guide
	Installation
	General Usage
	Curating References
	Single-End RNA-seq Pipeline
	Paired-End RNA-seq Pipeline
	Ribosome Profiling Pipeline
	Quality Control
	Analysis
	Read Pre-Processing
	Alignment
	Read Quantification
	Normalize
	Other Features
	FAQs
	Updates

	License
	Questions?

